GEN<I>CAM

Version 1.0 Standard

GenlCam Standard

Generic Interface for Cameras

Version 1.0

http://www.genicam.org/GenApi/Version_1 0

GEN<I>CAM

GenlCam_Standard.doc Page 1 of 46

Version 1.0

GEN<i>CAM Ve
Standard 4&

Table of Contents

L OVERVIEW e ettt e e e e e et e e s e e en e aanas 5
2 GENAPI MODULE — CONFIGURING THE CAMERA......c..ooiit e 6
P R NV =10 0 1 o 1 N 6
2.2 BASIC STRUCTURE OF THECAMERA DESCRIPTIONFILE ..cuvviniiiiiieeeee e e 7
2.3 NODES INTERFACES AND ABSTRACTFEATURES.....ucuituitiinieiinieieeieeeeneeneasensenenennes 9
2.4 CETTING AND SETTING VALUES. ...titititteee ettt e ee e ee et seas e s s sassas s snsens e ens 10
P T o101 =11 1Y, [0 o] = 11
S T @01 1N 15
2.7 IDENTIFYING AND VERSIONING ACAMERA DESCRIPTIONFILEccuiveiiiiieeeieeeeeeinn 19
2.7.1 Versioning the SChemMaoouuiiiiii e 20
2.7.2 Versioning the Camera Description File ... oo 20
2.7.3 ldentifying and Caching the Camera Description Eile.............ccccciiinnneen. 21
2.8 AVAILABLE NODE TYPES ..ttt ittt ettt et ee et et e e e e et e e et e e et e e e e ene e ans 21
2 < 0 N N[0 T [T 21
2.8.2 CAlBOONY uiiitiiiiei et 23
S TR T = (=T |15 (=] PRSPPI 25
2.8.4 Arrays and SEIECIOISiiiiiiii e 27
2.8.5 Integer, IntReg, MaskedINtREQ commmmeeriieeeeeiie e 28
2.8.6 SUHUCIREQ ...ttt e e 30
2.8.7 BOOIBAN. ... it e 31
A S IR < T O 0] 1 1] 4 =1 o (o [N 32
2.8.9 Float, FIOAtREQcccvviiiiii e e 32
2.8.10 Enumeration, ENUMENTIYcoooiiiiii e 3.3
2.8.11 SUHINGREG .. i eiiiiiiiiie et e ettt e e e e e e eeaaans 33
2.8.12 SwissKnife, IntSwissKnife, Converter, and IntCot®rer..............coceeeevvenneen. 34
2.8.13 ConfRom, TextDesc, and INtKEY............cuuierieimiiiiiieiiieeeece e 36
2.8.14 DcamLock and SMartFeatUre.ouu. et e eee e e 37
2R < T . T = o | 38
2.8.16 Group €lemMeNtoouuuuiiiee et eeeees 38
2.9 AVAILABLE INTERFACES. ... ittt itiiit ittt e iteetases s ea et re e st eas s taseaaesasssasrnesraen 39
2.9.1 lInteger INtEIfACEoouuuiiiii e e e 39
S I | = (o= | A 101 (=] =T o I 40
2.9.3 IStNG INtEITACEoun e 40
2.9.4 IEnumeration INtEITACEcouniiunii e ee 40
2.9.5 1COMMANd INTEITACE........oieeiiet e eas 40
2.9.6 IB0OICAN INTEITACE. iieiieeii e e e e 40
2.9.7 IReQISter INTEITACE.iiiiii e e e 40
2.9.8 ICategory INterfaceccoouuii i 41
A S I [=0 fl [01 =T 7= (L TR 41
2.9.10 ISElECtOr INTEITACEiee ittt e e e eanas 41
2.10 S ANDARD FEATURES LIST S, it ittt ettt et e e e e e e e e eaen 41
3 GENTL MODULE — GRABBING IMAGES ...t 42

GenlCam_Standard.doc Page 2 of 46

° o
GEN<I>CAM bq:;‘
Version 1.0 Standard 4& '
4 ACKNOWLEDGEMENTS .. .ottt 43
5 RIGHTS AND TRADEMARKSoitiiiiiiiiiiiiiiiiiiiiime e aeeeeaeeaaaaaaaaeaaeaeaeaeaaeaeaaeaeaees 43.
B INDEX .. iittitittitiiiitiiittt et eeee e e e e e e e e e e e e e e e e e e eeeetaeee ettt tettt ettt e anaa——hrnrnrnrnnnnnnnnnes 44
GenlCam_Standard.doc Page 3 of 46

GEN<I>CAM

-
..

IR

Version 1.0 Standard

HISTORY

Version |Date Changed by Change
1.0 13.06.2004 Fritz Dierks, Basler

Released version as votedwind the
Montreal meeting

GenlCam_Standard.doc

Page 4 of 46

-
..

GEN<I>CAM

Version 1.0 Standard - g g !

1 Overview

Today’'s digital cameras are packed with much mamectionality than just delivering an
image. Processing the image and appending thetsagsuthe image data stream, controlling
external hardware, and doing the real-time pathefapplication have become common tasks
for machine vision cameras. As a result, the prognang interface for cameras has become
more and more complex.

The goal of GenlCam is to provide a generic prognamg interface for all kinds of cameras.

No matter what interface technology the cameras umiag or what features they are

implementing, the application programming interf#8€1) should be always the same (see
Figure 1).

Unified API

Smart Cameras Xamera Link
/ GigE J& [\\] 1394

£ N\

‘‘‘‘)

%}\3 Y

Figure 1 The GenlCam vision

The GenlCam standard consists of multiplmodules according to the main tasks to be
solved:

= GenApi : Application programming interface (API) for camiring a camera
= GenTL : Transport layer (TL) for grabbing images
The modules can be released independently from ehein.

GenlCam_Standard.doc Page 5 of 46

GEN<i>CAM P

Version 1.0 Standard - g g

2 GenApi Module — Configuring the Camera

2.1 Introduction

The GenApi module deals with the problem of howdafigure a camera. The key idea is to
make camera manufacturers provide machine readadskons of the manuals for their
cameras. Theseamera description files contain all of the required information to
automatically map a camerd&aturesto itsregisters

A typical feature would be the camera’s gain areuber’s attempt might be, for example, to
setGair=42. Using GenlCam, a piece of generic softwaré lvél able to read the camera’s
description file and figure out that setting tBain to 42 means writing a value of Ox2A to a
register located at 0x0815. Other tasks involvedhinbe to check in advance whether the
camera possessesGain feature and to check whether the new value isistam with the
allowedGainrange.

Note that adding a new feature to a camera jushmegtending the camera’s description file,
thus making the new feature immediately availablalt GenlCam aware applications.

Application

Camera API

O Transport Layer API

Transport
Laye

O Camera Register Interface

Camera

Figure 2 Layers for accessing a camera

Figure 2 shows the layers involved in configuringcamera. The application requires a
camera API that allows dealing with the camera’s features, éwample, by writing code
which looks like this:

Camera.Gain = 42;

The GenApi module will translate this call into eries of calls to register access functions
provided by theransport layer API, for example, like this:

TransportLayer.WriteRegister(0x0815, 0x2A, 2); // address, data, length

GenlCam_Standard.doc Page 6 of 46

GEN<I>CAM

Version 1.0 Standard

Finally, the transport layer will deliver the catls thecamera interface GenApi currently
assumes that the camera is configured using eefliggter space.

The GenlCam standard defines gyntax of the camera description file plus teemantics
of the transport layer API. In addition, the GemCatandard recommends — but does not
enforce — the usage of certaiamesandtypesfor common features such @sin or Shutter

The standard does not contain the actual codesfuting the description file and translating
features to registers, nor does it contain thesprart layer code. Everyone is free to do their
own implementation. There is, howeverrederence implementationavailable that can be
freely used.

Note that theGenApi section in this document deals with the camerarggsmn file only. It

is intended to help the GenlCam user to understamdey ideas behind the GenApi module
and to enable people to write their own camera riggmn files. The GenApi reference
implementation comes with a reference manual shgpWwow an end user can use the GenApi
module even without a deeper understanding of dneepts laid out in this section.

2.2 Basic Structure of the Camera Description File

The camera is described by means oiXii file containing a set of nodes with each node
having atype and a uniqu@mame. Nodes can link to each other and each conneptays a
certainrole. Figure 3 shows a very simple example in graphicdation. The nodes are
shown as bubbles labeled "type::name," and thes lare shown as arrows labeled with the
role name.

There are two special nodes: fReot node from which one can start walking the nodelgra
and theDevicenode that provides the connection to the trandpgpetr!

Category:Root

Figure 3 Topology of a graph constructed from apdinconfiguration file

! Note that GenApi can be used to access otherteegiased devices in addition to cameras.

GenlCam_Standard.doc Page 7 of 46

GEN<i>CAM 1;‘,1

Version 1.0 Standard - g g

The Gain node in Figure 3 is of the IntReg type, which alahe extraction an integer from a
register. Looked at from tHeootnode, it is a feature of the camera. Rwotnode, therefore,
contains a link namegFeature referencing theGain node. To read and write th@ain
registers, thesain node needs access to the camera port, and tleostdins a link to the
Devicenode. The link is namgaPort and references tHgevicenode.

The Gain node contains all of the information reggito extract a two byte unsigned integer
in BigEndian mode. The complete camera descrigtieriooks like this:

<?xml version="1.0" encoding="utf-8"?>

<RegisterDescription
ModelName="Example01"
VendorName="Test"
ToolTip="Example 01 from the GenApi standard"
StandardNameSpace="None"
SchemaMajorVersion="1"
SchemaMinorVersion="0"
SchemaSubMinorVersion="1"
MajorVersion="1"
MinorVersion="0"
SubMinorVersion="0"
ProductGuid="1F3C6A72-7842-4edd-9130-E2E90A2058BA"
VersionGuid="7645D2A1-A41E-4ac6-B486-1531FB7BECE6"
xmins="http://www.genicam.org/GenApi/Version_1_0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instan ce"
xsi:schemalocation="http://www.genicam.org/GenApi/ Version_1 0
http://www.genicam.org/GenApi/GenApiSchema_Vers ion_1 O.xsd ">

<Category Name="Root">
<ToolTip>Entry for traversing the node graph</Too ITip>
<pFeature>Gain</pFeature>

</Category>

<IntReg Name="Gain">
<ToolTip>Access node for the camera's Gain featur e</ToolTip>
<Address>0x0815</Address>
<Length>2</Length>
<AccessMode>RW</AccessMode>
<pPort>Device</pPort>
<Sign>Unsigned</Sign>
<Endianess>BigEndian</Endianess>
</IntReg>

<Port Name="Device">
<ToolTip> Port node giving access to the camera</ ToolTip>
</Port>

</RegisterDescription>

The <?xml> node is a processing element givingshafitout the encoding of the file and is
always the same.

The <RegisterDescription> element is the outernboatket encapsulating all nodes of the
camera. The camera is identified by the®delNameand VendorNameattributes (model

GenlCam_Standard.doc Page 8 of 46

GEN<I>CAM

Version 1.0 Standard

“Example01” from vendor “Test” in this case). Théher attributes are explained later in
section 2.7.

Inside the <RegisterDescription> element, the nadedying in a flat order. Each node has a
uniqueName attribute and can be linked by sub-elements ngpiade containing th&lame
of some other node.

Each node has an optional <ToolTip> element thatains a short description. Th&ain
node has additional elements that depend on iteHctRegtype and tells us, for example,
the Addressof the register or itkength

Typically, an implementation will create one softe/abject per node and will link these
objects together according to the logical linksctié®d in the XML file? The nodes can
either be retrieved by their (unique) name or canfdund by traversing the node graph
starting with the root node. Once the user hasiistgroto the node, he can access that feature
through the node object's programming interface.

The syntax of the XML file is defined in théML schema given by theschemalocation
attribute. The schema is part of the standard. @bsument explains the ideas and overall
structure of GenlCam. The schema and its embedefedence documentation describe the
formal details. In case of doubt, the schema’'semtmverrides the content of this text.

The file location http://www.genicam.org/GenApi/GgiSchema_Version_1 0.xsd is
mandatory for the camera configuration file but baroverridden at runtime.

2.3 Nodes, Interfaces, and Abstract Features

Eachnode in the camera description file describes a sinigla. Depending on the item’s
nature, the node is of a specifiode type and has a specifimterface. The following
interfaces are currently availaBigach one is given with the typical widget usechap it on
a graphical user interface):

= linteger— maps to a slider with value, min, max, and in@at

= IFloat — maps to a slider with value, min, and max plpsical unit.
= |String— maps to an edit box showing a string

= IEnumeration— maps to a drop down box

= |Command- maps to a command button

= IBoolean— maps to a check box

= |Register— maps to an edit box showing a hex string

= |Category— maps to an entry in a tree structuring the calmdéeatures
= IPort — maps to the camera port and is typically notshgraphically

2 The actual implementation may split some of thelX\ddes into a set of multiple
implementation nodes.

% This list contains only interfaces representirapecific type. The reference implementation
contains more interfaces.

GenlCam_Standard.doc Page 9 of 46

GEN<I>CAM

Version 1.0 Standard

The signature of the interfaces is given in mor@itien section 2.9. The available node types
are described in section 2.8. There might be nialtqwde typesimplementing the same
interface type. The linteger interface, for example, is (among others) implet@erby the
following node types:

= IntReg- extracts an integer lying byte-bounded in astegi
= MaskedIntReg extracts an integer packed into a register, #am bit 8 to bit 12

= Integer— merges the integer’s value, min, max, and inergnproperties from different
nodes

Each node type extracts an integer from differentces in a different way. The output of all
of these nodes, however, can be used as type+safie for all links where an integer is
required.

Abstract features are always described in terms of amerface type, a name and a
meaning For example, theGain (name) of a camera might be defined asllateger
(interface type) and might describe the amplifimatinside a camera (meaning). Note that
other possible definitions exist, e.g., Bain could be defined as dEnumerationor as an
IFloat.

2.4 Getting and Setting Values

When the user reads or writes the value of a nihienode will trigger a cascade of read and
write operations within the node graph. To illustrghis, Figure 4 shows a more elaborate
example for theGain feature. TheGain feature is exposed via dimteger interface that lets
the user get and set the featukédueand lets her read (among other things) the fe'atMia
andMax value. The example in Figure 4 assumes that tire@has three registers, one for
the GainValueitself, one for itsMin value, and one for itMax value. From each of these
registers, the corresponding value is extractedguanintRegnode. Thelnteger node with
the nameGain then collects the data and merges them, expokmgetsults with atinteger
interface.

GenlCam_Standard.doc Page 10 of 46

GEN<i>CAM Ve
Version 1.0 Standard 4&

Category:Root

pF eature

Integer::Gain

pValue

pMax

IntReg::GainMax

Port pPort

Figure 4 Example of the control flow when gettinglaetting features

IntReg::GainValue

IntR eg::GainMin

If the user reads the value of tBain node, the call will be dispatched to BainValuenode,
which will in turn use théPort interface from théevicenode to ask for the right register.

If the user attempts to set the value of @&n node, the implementation might decide to
check the range first by reading thién andMax values from the correspondi®ainMin and
GainMaxnodes. If the value is inside the allowed ranpe Gain node then will write it via
the GainValuenode and th®evicenode to the camera. Note that the implementatimhim
cache the Min and Max values depending onGlaeheableattribute of the corresponding
IntReg nodes.

2.5 Access Mode

Each node has atcess modelefined according to the following table:

Readable| Writable Implemented | Access Mode
* * 0 NI — not implemented
0 0 1 NA — not available
0 1 1 WO — write only
1 0 1 RO —read only
1 1 1 RW — readable and writable

1 =yes, 0 =no, *=don’t care

A feature may be implemented in a camera, but im@adearily not available. If it is available,
then it is, by definition, also implemented and rbayreadable and/or writable.

GenlCam_Standard.doc Page 11 of 46

GEN<I>CAM

Version 1.0 Standard

Some nodes have elements to control accessilfditygxample, the register node (see section
2.8.3). In addition, GenlCam provides three mecrasi to change the accessibility at
runtime:

= A feature can be temporarilpcked depending on the value of another node. While
locked, a feature is not writable. In terms of ttable above, the writable flag is
temporarily forced to O.

= A feature can be temporarilyot available depending on the value of another node. In
terms of the table above, the writable and theabledflags are temporarily forced to O.

= A feature can beot implementedat all depending on the value of another nodéerims
of the table above, the implemented flag is permtyéorced to 0.

The distinction between being available and bemglémented has been made because a
GUI might want to handle the two cases differenflyfeature being not implemented at all
will never be shown to the user and a feature btngporarily not available will be grayed
out and the value will be replaced, e.g., by “—“tenporarily locked feature will be grayed
out, but the feature’s value may still be displayed

A hardwareTrigger that can be switche@n andOff is a typical example for making a feature
temporarily not available. If switched On, an additional feature, th&riggerPolarity,
becomes available and denotes whether the hardsignal should be interpreted as an
ActiveHigh or an ActiveLowsignal. If theTrigger is switchedOff, the TriggerPolarity is
meaningless and should be grayed out.

Figure 5 shows how this information is handledhie tamera description file. THeigger

and theTriggerPolarity feature are implemented using nodes of Ememerationtype that
map a set of enumeration entries to integer numbersexample, the entries for thegger

feature aréOn=1 andOff=0. The integer numbers are mapped to registeng umides of the
IntRegtype.

GenlCam_Standard.doc Page 12 of 46

GEN<I>CAM

Version 1.0 Standard

Category:Root

Figure 5 Controlling whether a feature is accessibl

The TriggerPolarity node has @lsAvailablelink that needs to point to a node exposing an
lintegerinterface. If the value of this node is zero, tlogle is temporarily not accessiBle.

In the exampleplsAvailable could directly point toTriggerRegbecauseTrigger=0On is
mapped to 1 andrigger=Off is mapped to 0. If this is not the case, a nodehef
IntSwissKnifetype comes in handy. It computes an integer résuih any number of other
integer nodes using a mathematical formula. Ik file, the node looks like this:

<IntSwissKnife Name="TriggerEnabled">
<ToolTip>Determines if the Trigger feature is swi tched on</ToolTip>
<pVariable Name="TRIGGER">TriggerReg</pVariable>
<Formula>TRIGGER==1</Formula>

</IntSwissKnife>

The mathematical formula in theFermula> entry is evaluated, yielding the result of the
node. Before the evaluation, the symbolic nameth@fvariables are replaced by the integer
values of the corresponding nodes. In the exantplere is only one <pVariable> entry
pointing to the TriggerReg node and having the syiilmmame TRIGGER. This is also found
in the formula that reads “TRIGGER==1".

So if the graphical user interface is updated.,ilitagk theTriggerPolarity node whether it is
enabled. ThelriggerPolarity node will in turn check théntSwissKnife which will in turn
compute the outcome from the value of TngigerRegnode.

* This follows the C/C++ semantic for interpretimgeigers as Boolean values.

GenlCam_Standard.doc Page 13 of 46

GEN<I>CAM

Version 1.0 Standard

The BytesPerPacketeature of DCAM compliant 1394 cameras is a typiesample for
making a featuréemporarily locked. The user can change this camera parameter, buif on
the DMA of the PC adapter card is not yet set upgfabbing’ Setting up the DMA means
that the transport layer asks the camera foBYytesPerPackgbarameter and configures that
value to the DMA. After this has been domgitesPerPackemust not be changed until the
transport layer releases the DMA. In the meantithe, parameter must be locked in the
camera.

Note that the camera itself has no way of knowiriggtiver the DMA is set up or not. As a
consequence, the “normal” nodes in the camera igésor files cannot be used for
controlling the lock status @ytesPerPacket

Application

pFeature
|

IntReg::BytesPerPacket

reflects if the
TL has locked
certain parameters

pIsLocked “pPort

Boolean: TLParamsLocked

—>

Transport
Laye

Camera

Figure 6 Locking a feature

The solution within GenApi is to provide a floatidpoleannode TLParamsLockedsee
Figure 6). TheBytesPerPacketinks to this node with glsLockedlink. The transport
layer (TL) needs to reflect its DMA status by updgtthe value of th&LParamsLocked
node. Before it sets up the DMA, it locks the resjpe camera parameters (e.g.,
BytesPerPackgtby settingTLParamsLockedo true, and after the grab has been finished, it
setsTLParamsLockedalse again. Changing thELParamsLockedode will in turn update
the lock status of all dependent nodes, for exantipéBytesPerPackatode.

Note that in order for this scheme to work gendlgicd LParamsLockednust be a standard
node name and the transport layer must have atwéiss GenApi interface of the camera. In
addition, the designer of the camera descriptinrfiust be aware of which parameters will

® The reason is that the DMA of a OHCI compliantd&@pter card needs to know the
BytesPerPackgtarameter in advance of the data transfer to erthat the frames are
transferred to memory without causing CPU load.

GenlCam_Standard.doc Page 14 of 46

GEN<I>CAM

Version 1.0 Standard

be locked by the transport layer. This informati®included in the transport layer standard,
e.g., the DCAM specification, which specifies tidairing grab the number of packages per
frame and the package size must be fixed.

A family of cameras where some members ha@Gammafeature implemented and some do
not is a typical example for a feature beimad implemented If the cameras have amquiry

bit advertising whether the camera has @emmafeature implemented or not, you can
maintain one camera description file for the wifalmily of cameras.

Figure 7 shows how to handle that case with GenlChBine Gammafeature node has a
plsimplementedink to aGammalngnode mapping to the inquiry bit in the camera. tipig
inquiry bits are typically packed into one registéor extracting the bits, thdaskedIntReg
node type is used. It works like &mRegnode, but in addition, you can denote which bit or
which contiguous group of bits you want to be ected as an integer.

Category::Root

pFeature
h 4

IntReg::Gamima

pIsImplemented

Figure 7 Checking whether a feature is implemented

2.6 Caching

If an implementation supports checking ranges, gres, and enable status for each write
access, it would normally trigger a cascade of @ambsses to the camera. However, most of
the values required for validation do not changediently or at all and can thus be cached.
The camera description file contains all of the essary means to ensure the cache’s
coherency.

GenlCam_Standard.doc Page 15 of 46

GEN<I>CAM

Version 1.0 Standard

) Area of Interest
ImagerHeight (AOI)

ImagerWidth

Figure 8 Area of Interest

To explain this, a more elaborate example mustdesl.uFigure 8 shows an area of interest
(AOI) on the imager in a camera. The camera witidsenly the data from within the AOI,
which is given as a rectangle defined by the patars€op, Left, Width,andHeight

Category::Root

pF eature

IntReg: HeightReg

pPort

IntReg: LefiReg

Figure 9 Controlling the Area of Interest

Each of these four parameters is exposed throughister as shown in Figure 9. This simple
scheme, however, cannot deal with the fact thaeradrthe four parameters has an unlimited
range. Assuming that the pixel coordinates statti @j the following restrictions apply:

0< Left< ImagerWidh —Width
0<Top< ImagerHeidt — Height
1<Width< ImagerWidh - Left
1< Height< ImagerHeidt - Top

GenlCam_Standard.doc Page 16 of 46

GEN<I>CAM

Version 1.0 Standard

To take these restrictions into account, the marinvalues for each of the four parameters
must be computed usin§wissKnifenodes; the minimum values are fixed. The resulting
GenApi node graph is shown in Figure 10. Note ¢gha¢cond layer dhtegernodes has been
introduced and that the maximum values are takamn fntSwissKnife nodes.

Category:Root

Integer:Left

IntReg:LefiReg

IntReg:WidthReg
P

Figure 10 Controlling the Area of Interest whil&itay restrictions into account

pPort

Assuming an imager with VGA resolution (640x48®e tXML code for theTopMaxnode
might look like this:

<IntSwissKnife Name="TopMax">
<pVariable Name="CURHEIGHT">HeightReg</pVariable>
<Formula>480-CURHEIGHT</Formula>

</IntSwissKnife>

Returning to the topic of caching, you would notivtheHeightRego be read each time you
set theLeft feature, nor would you want tfimpMaxnode to be evaluated each time. This is
indeed not necessary if (and only if) you are ¢eriaatHeightRegwill only change when the
GenApi itself writes a new value to that registéthis is the case, you can cache the values
of HeightRegand TopMax

If the user writes a new value tbHeightReg the HeightRegcache can be updated
immediately, and th&opMaxcache needs to be invalidated. The next time snenaocesses
theLeft node, it will readTopMax thereby creating a new cache entryTopMax

As a rule, all clients of a node are informed # thode changes its content so that the clients
can invalidate their caches.

Normally, the links between the nodes in the canuweacription file contain all of the
information needed so that the implementation ceal evith the caching without the user
needing to worry about it. However, there are tertases were the camera itself contains
more dependencies than those directly describedebgodes.

GenlCam_Standard.doc Page 17 of 46

GEN<I>CAM

Version 1.0 Standard

Some cameras contain a feature caB#thing WhenBinning is switched on, the charge
from adjacent pixels is merged together, yieldingager full well at the cost of lower
resolution. Assuming a VGA resolution imager, typiconfigurations are:

= No Binning (640 x 480)

= Horizontal Binning (320 x 480)
= Vertical Binning (640 x 240)

= Full Binning (320 x 240)

In GenlCam, this feature would be described usmgraumeration with the four entries given
above (see Figure 11). However, changing the bgnalso means changing the imager size —
not the real physical imager, but rather the ldgitager size that imposes the restrictions on
the AOI parameters.

Category::Root

pFeature

p
Integer:Width Integer:Left

Integer:Height
IntSwissKnife:HeightMax

frme

IntReg:TopReg IntReg:HeightReg

Integer:Top

pValue

pVariable p

IntReg:LeftReg

InfR eg:Imager WidthReg

pluvalidato;

IntReg:BinningReg

Figure 11 Controlling the Area of Interest takirigrbng into account

Let's assume that the camera provides the infoomabout the current (logical) imager size
with a register. As shown in Figure 11, this intiods two new nodesmagerHeightRe@nd
ImagerWidthRegThe XML code forTopMaxthen looks like this:

<IntSwissKnife Name="TopMax">
<pVariable Name="CURHEIGHT">HeightReg</pVariable>
<pVariable Name="IMAGERHEIGHT">ImagerHeightReg</p Variable>
<Formula>IMAGERHEIGHT-CURHEIGHT</Formula>

</IntSwissKnife>

As we have seen, the valuelofagerHeightRegvill change if the user changes tBaning
feature. However, there is no data flow betweentW® nodes. To make sure that the node

GenlCam_Standard.doc Page 18 of 46

GEN<I>CAM

Version 1.0 Standard

cache forimagerHeightRegwill be invalidated when the content of tBenningRegnode
changes, apinvalidator> link must be introduced between the two node® 3Jdle purpose
of this link is to document the hidden dependerevieen the two features and to make sure
that the cache is always coherent.

2.7 Identifying and Versioning a Camera Description File

It must be possible to identify a camera descnipfite, and thus the described camera, in a
unique manner. In addition, a camera descriptitan iill typically evolve over time, e.g.,
when features are added to the corresponding camedalct. This creates the necessity for a
versioning mechanism. The GenApi syntax itself wl8o evolve over time, e.g., when new
node types are added, thus a versioning mechanisthe schema is also required.

The necessary means are found in the attributeolishe <RegisterDescription element,
which is the outermost bracket of the XML file. lda@s an example:

<RegisterDescription
ModelName="Example01"
VendorName="Test"
ToolTip="Example 01 from the GenApi standard"
StandardNameSpace="None"
SchemaMajorVersion="1"
SchemaMinorVersion="0"
SchemaSubMinorVersion="1"
MajorVersion="1"
MinorVersion="0"
SubMinorVersion="0"
ProductGuid="1F3C6A72-7842-4edd-9130-E2E90A2058BA"
VersionGuid="7645D2A1-A41E-4ac6-B486-1531FB7BECE6"
xmins="http://www.genicam.org/GenApi/Version_1_0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instan ce"
xsi:schemalocation="http://www.genicam.org/GenApi/ Version_1 0
../GenApiSchema_Version_1_0.xsd">

The camera described is identified by ¥endorName/ ModelNamepair. Assuming that
vendor names are mutually exclusive due to tradeksnshis scheme creates unique names.
The ToolTip attribute is used to provide additional informati@bout the device that can be
displayed to the user, e.g., in a selection listefices found on a bus.

Names inside a camera description file may comen fdifferent name spaces. This is
described in more detail in section 2.8.1. Withigiv'en camera description file, names come
either from a custom name space or a standard spate. The attribut8tandardNameSpace
identifies the standard name space used in the file

The versioning of the different items in a camezaddiption file follows common rules, and a
three parversion numberis used:

<Major>.<Minor>.<SubMinop
An example would be ‘1.4.2".
The followingcompatibility rules apply:
= Files with a higher Major version number are natkveard compatible

GenlCam_Standard.doc Page 19 of 46

GEN<I>CAM

Version 1.0 Standard

= Files with a higher Minor version number are bacldxeompatible

= Changes in the SubMinor version number are bugs fomy; always use the file with the
highest available SubMinor version number

Example: Version 1.3.0 is compatible with versioh.?, 1.2.* and 1.3.* (were * meargon’t
care). It is not compatible with version 2.*.*. If vaos 1.3.2 is available, it should be used
instead of 1.3.0.

2.7.1 Versioning the Schema

The attributesSchemaMajorVersignSchemaMinorVersignand SchemaSubMinorVersion
describe the version of the GenApi schema usedherXML file. These attributes are
mandatory. They are for information purposes. Idit@h, the Major and Minor schema
version numbers are encoded in the namespacerfdaesentry) and the schema'’s file name
(seexsi:schemalocatioentry).

In the example, the namespace reads “http://wwiicgemorg/GenApi/Version_1 0. A
program seeking the schema file might either regrig over the internet using the URL or
look at the file path given optionally in the sedopart of theschemalocationln the
example, the path reads “../../GenApi/GenApiSchaéveasion_1 0.xsd” and assumes that the
XML file is stored within the folder structure di¢ GenlCam reference implementation.

The xmins:xsi entry “http://www.w3.0rg/2001/XMLSchema-instancetlescribes the
namespace of the schema language itself.

Note that an implementation supporting, e.g., s@®enp to version 1.3.* must have three
schema files present: for versions 1.0.*, 1.2.*d dn3.*. This is required for backward
compatibility — since older XML files come with afder namespace, they need older schema
files. On the other hand, an XML file using a lasehema version not yet supported by the
implementation, say 1.4.*, needs to be rejectethchethe necessity to have the version
number coded in the schema’s namespace.

2.7.2 Versioning the Camera Description File

The MajorVersion MinorVersion and SubMinorVersionattributes describe the version of
XML file itself. The camera vendor is responsibde following the compatibility rules.

What does backward compatibility mean with respeatamera description files? Assume a
camera that in version 1.0 has only a single feaitmplemented. Now assume the camera’s
firmware is extended to have another feature. Thezdwo ways to deal with this situation in
the camera description file. If the feature is jadtled to the XML file, this implicitly states
that the feature is always there. Because thigtigroe with older cameras, the new file will
not be backward compatible, and consequently it meisthe version number 2.0.

A second, smarter way to deal with the situationoisntroduce an inquiry register in the

camera(!) where the user can check to see if thefeature is present or not. The new feature
can now be added in a way that lets the user leam the access mode of the feature
whether the feature is present or not. This makesnew file backward compatible and its
version number would be 1.1. Of course, this issfids only if an inquiry mechanism has

been implemented in the camera from the beginriihg. benefit of using the second method
is that only one camera description file must béntained for a whole family of cameras.

GenlCam_Standard.doc Page 20 of 46

GEN<I>CAM

Version 1.0 Standard

Note that compatibility refers only to thefeature nodes and their behavior, not to
implementation nodes(for details see section 2.8.2).

2.7.3 Identifying and Caching the Camera Description File

Loading a camera description file may involve omemmre pre-processing steps. To speed
things up, the pre-processed XML file can be caclient caching, a key is required that
uniquely identifies the camera description file cémbination of the RegisterDescription
element'sVendorName, ModelNamélajorVersion MinorVersion and SubMinorVersion
attributes would be sufficient, but is a bit clumeyuse.

To simplify this caching, th&ersionGuidattribute has been introduced. TWersionGuid
attribute holds a global unique identifier (GUIDjat must be changed each time one of the
VendorName, ModelNameMajorVersion MinorVersion or SubMinorVersionattributes
changes. Th&ersionGuiduniquely identifies a certain version of a cameeaaiiption file,
hence the name.

Instead of caching all of the different camera deson files that might come along in
different versions over time, it can make sense&dohe only the most recent file, which
contains all others via backward compatibility. fdh@s one such file pevendorName,
ModelName,and MajorVersion number. The caching key for that kind of file iset
ProductGuid,which also holds a global unique identifier (GUI@)d which must be changed
each time th&endorName, ModelNamet theMajorVersionchanges.

2.8 Available Node Types

This section gives a brief description of each lakdé¢ node type, of their behavior, usage,
and most interesting parameters. In addition, tieeeeformal description for the XML layout

of each node in an XML schema file included witk tRenlCam standard. This schema file
can be read by most XML editors and will greatimgiify creating camera description files

by providing a syntax check and context sensitilenfhelpers.

This document refers to theGenApi schema version 1.0 found in the file
GenApiSchema_Version_1_0.xBlbte that in subsequent versions of the standalditianal
node types, elements, and attributes may be addeetver, backward compatibility will be
maintained if at all possible.

2.8.1 Node

The Nodetype contains those elements and attributes comimail other node types. A
stand-aloneNode node is pretty useless, but is possible for tgsporposes. Here is an
example:

GenlCam_Standard.doc Page 21 of 46

GEN<I>CAM

Version 1.0 Standard

<Node Name="Gain" NameSpace="Standard">
<Extension>

<MyElement>Something vendor specific</MyElement>
</Extension>
<ToolTip>The amplitication of the camera</ToolTip >
<Description>A more elborated description</Descti ption>
<DisplayName>Gain</DisplayName>
<Visibility>Expert</Visibility>
<EventID>12fc</EventID>
<plsimplemented>SomeNodel</plsimplemented>
<plsAvailable>SomeNode2</pIsAvailable>
<plsLocked>SomeNode3</plsLocked>
<ImposedAccessMode>RO</ImposedAccessMode>
<pAlias>SomeNode4</pAlias>

Each node has Hameattribute. TheNamemust beunique within the camera description
file. Names can be composed of alphanumeric chera¢A-Z a-z 0-9]. The schema also
allows the use of the underscore ‘_’, but the usclere should not be used by camera
description files designers because the referemg@ementation uses it for automatically
generated names.

EachNamelives inside aname spaceThe name space is identified by the combinaticthe
NameSpacattribute of the node and tH&tandardNameSpacattribute of the enclosing
<RegisterDescription>element (see section 2.7). TNameSpacaittribute can have two
possible valuesCustomor Standard If it is Custom,any name can be used as long as it is
unique within the camera description file. If it $&andard,it must come from one of the
standard feature name listsavailable for the following camera types (for maietails see
section 2.9):

= |IDC : cameras following th&394 1IDC standard (also callddCAM standard)
= GEV: cameras following th&igE Vision standard

= CL: cameras following th€amera Link standard

= None: no standard is used

An <Extensiom element can be used to add custom specific daacamera description file.
All elements placed inside the <Extension> elenaeatignored.

The <ToolTip> element gives a short description of the nodendy also be used as a brief
description for a reference documentation autoralyicgenerated from the camera
description file.

The <Descriptior» element gives a more detailed description ofntbee. It may also be used
as a long description for a reference documentatidgomatically generated from the camera
description file.

The DisplayName element lets you define feature captions thahirtig used instead of the
feature'dsName

The isibility> element defines the user level that should ge¢sscto the feature. Possible
values areBeginner Expert Guru, andInvisible The latter is required to make a feature
show up in the API, but not in the GUI (see sec2dh?2).

GenlCam_Standard.doc Page 22 of 46

GEN<I>CAM

Version 1.0 Standard

The <EventlD> element is used for delivering asynchronous evehtcamera might send an
event package to indicate that one ore more dama ibh the camera has changed its value.
GenlCam handles the event by invalidating the naaesesponding to the data items. The
nodes are found by the EventIlD which is a hexadalcmamber which comes with the event
package from the camera. Each node can have otien@ip EventlD element.

The <gsimplemented, <plsAvaliable>, and <psLocked elements contains the names of
nodes implementing an linteger interface. If thelments are present, they influence the
access mode of this node as described in secton 2.

An <ImposedAccessModeelement can be used to narrow the access modkimgsfrom
other nodes.

<pAlias> points to another node which describes the saateife in a different manner. This
feature will be mainly used in a GUI: a Categoryghtibe replaces by its alias if not all
members are shown; an integer and a flat note niglatliases of each other if they show the
raw and the abs value of a feature.

2.8.2 Category

The Category node is used to group features that should beepted to the user. It
implements thdCategoryinterface and inherits aNlode elements. It also contains a list of
<pFeature> elements that point to the features containeth@ category. Categories can
contain other categories, thus forming a tree bitrary depth.

There is one specid@ategorynode with the standard nanoof that is the basis of the
category tree. Users may want to start browsingféagures of a camera from here. The
following example creates the node graph showrignrg 12:

® The featurdCategory::Rootis defined in all standard name spaces.

GenlCam_Standard.doc Page 23 of 46

GEN<i>CAM P

Version 1.0 Standard - g g

<Category Name="Root" NameSpace="Standard” >
<pFeature>ScalarFeatures</pFeature>
<pFeature>Trigger</pFeature>

</Category>

<Category Name="ScalarFeatures" >
<pFeature>Shutter</pFeature>
<pFeature>Gain</pFeature>
<pFeature>Offset</pFeature>
<pFeature>WhiteBalance</pFeature>
</Category>

<Category Name="WhiteBalance" >
<pFeature>RedGain</pFeature>
<pFeature>BlueGain</pFeature>
</Category>

<Category Name="Trigger" >
<pFeature>TriggerMode</pFeature>
<pFeature>TriggerPolarity</pFeature>
</Category>

Note that a user accessing the nodes by browsmgattegory treeis intended only to see
features nodesin the first layer below th€ategorynodes. Nodes deeper in the graph are
calledimplementation nodesand are retrievable only by name or in a specialvbe mode
that the implementation might provide for debuggpugposes. Note that the names and the
layout of the implementation nodes may change witmotice in a new release of a camera
description file, even if the vendor declares ithward compatible (see also section 2.7.3).

Category::Root
Category::ScalarFeatures pFeature

pFeaturgF eature
pFeature

pPort

pFeature

Category::WhiteBalance
IntReg::Shuiter

pFeature, pFeature

IntReg:RedGain

pPort

Figure 12 A tree of categories

GenlCam_Standard.doc Page 24 of 46

GEN<I>CAM

Version 1.0 Standard

2.8.3 Register

The Registemode maps to a contiguous array of bytes in thistexgspace of the camera. The
Registemode implements thi&Registerinterface and inherits its elements and attribfres
theNodenode. It in turn leaves its elements and nodedl tpecialized register access nodes,
such adntReg StringRegetc. ARegistemode, however, can also be instantiated on its own
giving access to the raw binary data. Here is plgraxample:

<Register Name="SensorTemperature">
<Address>0xff00</Address>
<Length>4</Length>
<AccessMode>RO</AccessMode>
<pPort>Device</pPort>
<Cachable>No</Cachable>
<PollingTime>10000</PollingTime>

</Register>

The example exposes the temperature of the cansa&or. The temperature can change at
any time and is therefore not cacheable. If digdiayt should be polled every 10.000 ms.

The <Address element gives the address of the register icdéneera’s register space.
The 4.engtl> element gives the length of the register in hytes

The <AccessMode element can have the values RW (read/write), R@d only), or WO
(write only) and indicates what the camera carvdeli

The <9pPort> element contains the name of a Port node thasgaccess to the camera’s
register space (for details see section 2.8.15).

The <Cacheable element can have the valud&, WriteThrough and WriteAround
WriteThroughmeans that a value written to the camera is writte the cache as well.
WriteAroundmeans that only read values are written to théeathe latter behavior makes
sense, for example, with dRloat::Gain node where the user can write any value, but when
reading back, will retrieve a value that has beemded by the camera to a value the internal
analog-to-digital converter is able to deliver. &ldhat caching is an optional feature of any
implementation.

The <PollingTime> element denotes the recommended polling timenatelin ms] for
reading a feature that is not cacheable. Note pladitng is an optional feature of any
implementation and the polling time is a hint only.

Instead of a single Address entry, a register can have multiple entries Far tAddress,
<pAddress, and/or tSwissKnife types. The values of these entries are summeltliyg
the address of the register node.

The pAddress element points to a node implementing an lintag@rface delivering a
contribution to the final address.

The dntSwissKnife element can be used to compute an address adigridfrom multiple
sources (for details see section 2.8.12).

The <lIndex Offset="12"> element points to a node implementing an linteigeerface
delivering anindex The element has an attribuUddfset The product of index and Offset is
added to the address.

GenlCam_Standard.doc Page 25 of 46

GEN<i>CAM 1;‘,1

Version 1.0 Standard - g g

The <gnvalidator> element contains the name of a node that whengelk will invalidate
the content of this node as described in sectién 2.

The following example shows how to use this medranior indirect addressing (see also
Figure 13):

<Integer Name="BaseAddress">
<Value>0xff00</Value>
</Integer>

<IntReg Name="Gain">
<Address>0x04</Address>
<pAddress>BaseAddress</pAddress>
<Length>4</Length>
<AccessMode>RW</AccessMode>
<pPort>Device</pPort>
<Sign>Unsigned</Sign>
<Endianess>LittleEndian</Endianess>

</IntReg>

<IntReg Name="Offset">
<Address>0x08</Address>
<pAddress>BaseAddress</pAddress>
<Length>4</Length>
<AccessMode>RW</AccessMode>
<pPort>Device</pPort>
<Sign>Unsigned</Sign>
<Endianess>LittleEndian</Endianess>

</IntReg>

This example mimics a C/C++ struct of the form:

struct { /I BaseAddress 0xff00
uint32_t Reserved;
uint32_t Gain; /I Offset 0x04
uint32_t Offset; /I Offset 0x08

3

The value for the struct’s base address comes &8aseAddressonstant integer node and
is fed into the node using g@Address element. Each element of tHegin andOffse) struct
has an offset that is added to the base address aisisAddress element.

Category:Root

Integer::BaseAddress

Figure 13 Indirect addressing: mapping a C/C++cstru

GenlCam_Standard.doc Page 26 of 46

GEN<i>CAM Ve
Version 1.0 Standard 4&

Note that this mechanism is used very frequentth w894 DCAM compliant cameras where
the whole standard register block has a common hddesss that must be parsed from a
IEEE 1212 configuration ROM structure at run-tirsed also th€onfRomnode type).

2.8.4 Arrays and Selectors

Indirect addressing as described in the previoapteh is also used for accessing arrays. The
following example shows how this is done (see &igoire 14):

<Integer Name="LUTIndex">
<Value>0</Value>
<Min>0</Min>
<Max>255</Max>
<pSelected>LUTEntry</pSelected>
</Integer>

<IntReg Name="LUTEntry">
<IntSwissKnife Name="LUTEntryAddress">
<pVariable Name="INDEX">LUTIndex</pVariable>
<Formula>0xff00 + INDEX * 4</Formula>
</IntSwissKnife>
<Length>4</Length>
<AccessMode>RW</AccessMode>
<pPort>Device</pPort>
<Sign>Unsigned</Sign>
<Endianess>LittleEndian</Endianess>
</IntReg>

A LUT Entry element is used as a pointer into tHéTL The address of this element is
computed using an embeddethtSwissKnife element that computes the address of the
LUTEntry element according to the formul@aseAddres+LUTIndexsizeof(LUTEntry). The
LUTIndexis a “floating” Integer node that is not connected to the camera. Insieathrts
with <Value> and can be changed betwedvir> and Max> by the user.

GenlCam_Standard.doc Page 27 of 46

GEN<I>CAM

Version 1.0 Standard

Category:Root
Integer: L.UTIndex

pVariable[INDEX]

pF eature

pSelected

IntReg:L.UTEntry

Figure 14 Accessing a LUT array

The fact that the LUTIndex can be used to selegexific LUTEntry is made explicit by the
<pSelected element in the LUTIndex node. Nodes implementary Iinteger or and
IEnumerationinterface can have any numbermp&electecentries to indicate that tleelected
nodes will show a different value depending on the vabfeselector node Information
whether a node is a selector and which are thecteelenodes can be retrieved using the
ISelector interface which has the according methadsiSelectorand GetSelectedFeatures
Using this interface a GUI can for example showsiadf LUTEntries because it knows that if
it runs LUTIndex (selector) from min to max it wiktrieve an array of different values from
LUTEntry (selected).

Note that the selector and the indirect addressaingme can also be used to acceshi-
dimensional arraysvia multiple indices.

2.8.5 Integer, IntReg, MaskedIntReg

The linteger interface provides access to signed 64 bit integeiables that have "alue
restricted by thdinimum Maximum andincrementpparameters according to the formulas:

Maximum- Minimum
Increment

Value= Minimum-+i [Increment with 0<is<

The IntRegrode maps to byte-aligned integer registers.heiits the elements and attributes
from Registernodes. Below is an example mapping to a 2 bytégoed integer. Note that
such a variable has the following restriction pagtars:Minimum= 0, Maximum= 65.535,
Increment= 1.

GenlCam_Standard.doc Page 28 of 46

GEN<i>CAM P

Version 1.0 Standard - g g

<IntReg Name="Gain">
<Address>0x1234</Address>
<Length>2</Length>
<AccessMode>RW</AccessMode>
<pPort>Device</pPort>
<Sign>Unsigned</Sign>
<Endianess>BigEndian</Endianess>

</IntReg>

The <Sigre element can have the val8egedor Unsigned Note that unsigned int64 values
are not available.

The <Endianess element can have the valuegtleEndian or BigEndianand refers to the
endianess of the device as seen trough the tradager. The transport layer must attempt to
not change the endianess. Note that the implementatust be aware of whether it is
running itself on a little-endian or big-endian rhme.

Sometimes integers are not byte aligned, but askeuhinto a register. In this case, a
MaskedIntRegs used. It inherits the elements and attributesnfthe Registernode. The
following XML code is an example for a 12 bit ineggpacked into a 2 byte register. The
<LSB> and MSB> elements denote the least significant bit and rtiust significant bit
respectively.

<MaskedIntReg Name="Offset">
<Address>0x2345</Address>
<Length>2</Length>
<AccessMode>RW</AccessMode>
<pPort>Device</pPort>
<LSB>11</LSB>
<MSB>0</MSB>
<Sign>Unsigned</Sign>
<Endianess>BigEndian</Endianess>

</MaskedIntReg>

In the case where only a single bit must be mapp&dich is quite common for presence
inquiry bits — instead of using arL8B> and an<MSB> element with the same value, you
can also use aBit> entry.

<MaskedIntReg Name="OffsetInq">
<Address>0x2345</Address>
<Length>2</Length>
<AccessMode>RW</AccessMode>
<pPort>Device</pPort>
<Bit>15</Bit>
<Sign>Unsigned</Sign>
<Endianess>BigEndian</Endianess>

</MaskedIntReg>

The numbering of the bits differs between big-endiad little-endian as is shown for a 32 bit
integer below:

Little-Endian: MSB ... LSB
31 ... O

Big-Endian: MSB ... LSB

GenlCam_Standard.doc Page 29 of 46

GEN<I>CAM

Version 1.0 Standard

o .. 31

The LSB is the bit which maps to tl2& digit. Note that with big-endian the equation MSB
LSB holds true while with little-endian the oppesitolds true: LSE MSB.

TheIntegernode type is used to merge WMalueand theMinimum Maximum andincrement
parameters from different sources. It inheritsal@ments and attributes from tNedenode.
The restriction parameters are either given astaatss using the Min>, <Max>, and {¢nc>
elements or as a pointer to other linteger nodésguhe pMin>, <pMax>, and {lnc
elements.

The Value normally comes from another node usimg<iValue> element. Alternatively, a
constant can be given inside "Yatue> element. In this case, the node is a “floatingtiable
that can be set by the user to any value allowedhbyrestriction parameters. The given
constant is the start value. A typical examplénesfollowingIndexnode that can be set to the
values 0, 2, 4, ..., 254:

<Integer Name="Index">
<Value>0</Value>
<Min>0</Min>
<Max>255</Max>
<Inc>2</Inc>
</Integer>

The <Representation element gives a hint about how to display thegat. If the element is
Linear or Logarithmic, a slider with the appropriate behavior should rhplemented. If the
element isBoolean,a checkbox should be usd®lreNumbemeans to use an edit box only
with decimal displayHexNumbemeans the same with hexadecimal display.

Integer, IntRegandMaskedIntnodes can also have apSelected element. For a descripton
see section 2.8.4.

2.8.6 StructReg

MaskedIntnode are often used to pick a filed of bits fromegister. If a complet®askedint
entry is used for each bit there is a lot of unseagly copied data in the camera description
file because the differeMaskedIntentries share most of their elements like, e g <gPort>
element, the Endianess etc.

In order to overcome this tt&tructRegrode has been introduced. Here an example:

<StructReg Comment="VFormat7ingReg">
<ToolTip>Inquiry register for video format 7 col or codes</ToolTip>
<Address>0x14</Address>
<pAddress>VFormat7ModeCsrBase</pAddress>
<Length>4</Length>
<AccessMode>RO</AccessMode>
<pPort>Device</pPort>
<Endianess>BigEndian</Endianess>
<StructEntry Name="VFormat7Mono8InqReg">
<ToolTip>Inquiry for ColorCode Mono8</ToolTip>
<Bit>31</Bit>
</StructEntry>
<StructEntry Name="VFormat7YUV422InqReg">
<ToolTip>Inquiry for ColorCode YUV8 422</ToolTi p>

GenlCam_Standard.doc Page 30 of 46

GEN<I>CAM

Version 1.0 Standard

<Bit>29</Bit>
</StructEntry>
</StructEntry>
<StructEntry Name="VFormat7Raw8IngReg">
<Bit>24</Bit>
</StructEntry>
</StructReg>

The StructRegnode contains the same elements asMhskedIntelement. In addition it
contains one or moreStructEntry> elements which in turn can contain again the same
elements as thilaskedIntelement. A pre-processor replaces $tiwictRegnode with a set of
MaskedIntnodes: From eachStructEntry element oneMaskedIntnode is created which
gets theNameattribute from theStructEntryelement, all its sub-elements, plus all elements
from theStructReghode which are not present already in tBé&rsctEntry element. Thus the
first MaskedInt node created from the example alveweld look like this.

<MaskedInt Name="VFormat7Mono8IngReg ">
<Address>0x14</Address>
<pAddress>VFormat7ModeCsrBase</pAddress>
<Length>4</Length>
<AccessMode>RO</AccessMode>
<pPort>Device</pPort>
<Endianess>BigEndian</Endianess>
<ToolTip>Inquiry for ColorCode Mono8</ToolTip>
<Bit>31</Bit>

</MaskedInt>

Note that the ¥oolTip> element was selected from th8tructEntry element, not from the
<StructReg node. In contrast the entry with the Nakfeormat7Raw8IngRewould inherit
the <ToolTip> element from the StructReg node because it has no own. Tt&tractReg
element has a@ommentattribute which describes it.

2.8.7 Boolean

The Booleannode maps the integer value in th@n¥/alue> element to true and the integer
value in the ©ffValue> element to false. Th®&oolean node implements théBoolean
interface and inherits the elements and attribinten theNodenode. The following example
shows how to use this capacity for a Trigger ndde tan be displayed in a GUI as a check
box:

GenlCam_Standard.doc Page 31 of 46

GEN<I>CAM

Version 1.0 Standard

<Boolean Name="Trigger">
<pValue>TriggerReg</pValue>
<OnValue>1</OnValue>
<OffValue>0</OffValue>
</Boolean>

<IntReg Name="TriggerReg">
<Address>0x6789</Address>
<Length>1</Length>
<AccessMode>RW</AccessMode>
<pPort>Device</pPort>
<Sign>Unsigned</Sign>
<Endianess>BigEndian</Endianess>

</IntReg>

2.8.8 Command

The ICommandinterface lets the user submit a command by cptfire methodExecuteand
then poll to learn if the execution has been acdisimgd by calling the method IsDone.

The correspondin@ommanchode inherits the elements and attributes ofNibdenode.

In addition it has &ommandValuelement which holds an integer constant whichristem
into a node which is referenced to bp\dalueelement. Writing the command value submits
the commandsDonereads the value back and returns false as longtas value equals the
command value. In order to make a float@gmmandnode possible instead of @/alue
element also &alueelement is allowed. The CommandValue can alterelgtialso be taken
from pCommandValueA <PollingTime> entry is provided in order to handle for self clegr
commands.

2.8.9 Float, FloatReg

The IFloat interface has a definition similar to the definiti@of the linteger interface as
described in the section above. It hagaduethat is restricted by thlinimumandMaximum
parameters, but in contrast to integer, there ima@ment. In additioriFloat exposes &nit
that is just a string for display purposes.

The Float node is built analogously to theteger node in that it has the\alue>, <Min>,
<Max> or <pValue>, <pMin>, <pMax> restriction parametergespectively. In addition, it can
have a Representation element that can take the valugsear and Logarithmic plus a
<Unit> element that contains the unit as a string. ldaerexample:

<Float Name="Exposure">
<pValue>ExposureReg</pValue>
<Min>0.02</Min>
<Max>10.0</Max>
<Unit>ms</Unit>

</Float>

A FloatRegnode can be used to extract a floating point v&oen a byte aligned register.
The FloatReg node inherits the elements and nodes of Registernode. It also has an
<Endianess element. The_engthcan be either 4 bytes (single precision float)8dbytes

(double precision float). The number format habdaccording to IEEE standard 754-1985.

GenlCam_Standard.doc Page 32 of 46

GEN<I>CAM

Version 1.0 Standard

2.8.10 Enumeration, EnumEntry

The Enumerationnode maps aame to anindex value and implements thEEnumeration
interface. TheEnumerationnode holds a list oEnumEntrieswith each representing a
possible {name, indexpair. TheEnumeratiomode inherits the elements and attributes of the
Nodenode. In addition, it has either ¥ aue>element that represents the current index value
or a PpValue> element that connects to a node withlategerinterface.

The following example shows aBnumerationdescribing the cameraBolorCode If the
ColorCodeRegs set to 1, for example, the camera is configtioddono16

<Enumeration Name="ColorCode">

<EnumEntry Name="Mono8">
<Value>0</Value>

</EnumEntry>

<EnumEntry Name="Mono16">
<Value>1</Value>

</EnumEntry>

<EnumEntry Name="YUV422">
<Value>3</Value>

</EnumEntry>

<pValue>ColorCodeReg</pValue>

</Enumeration>

<IntReg Name="ColorCodeReg">
<Address>0x1234</Address>
<Length>1</Length>
<AccessMode>RW</AccessMode>
<pPort>Device</pPort>
<Sign>Unsigned</Sign>
<Endianess>BigEndian</Endianess>

</IntReg>

Quite often, some of the EnumEntries in the list @mporarily unavailable and thus should
not be presented to the user. To describe this@&hlCam, you can haveksimplementes
and <plsAvailablee elements in th&anumEntrysub-nodes, just as you can have with any
other node.

Typically, the implementation will pre-process tt@mera description file and will create a
separate node with thidame“EnumerationName_EnumEntryName” for eaghumEntry
Instead of th&EnumEntryitself, a PEnumEnNtry element is placed in tiEnumeratiomode.
The original name of thEnumEntryis copied to the Symbolic element inside the newly
createdEnumEntrynode. The index value represented by the EnumEstoopied to the
EnumEntrys <Value> element.

Enumeratiomodes can also have apSelected element. For a descripton see section 2.8.4.

2.8.11 StringReg

A string is a (possibly null-terminated) ASCII sigi placed somewhere in the address space
of the camera. A string is exposed vial&tring interface. The example below shows how to
extract the model name of the camera usingtangRegnode. We assume that the
ModelNamecan have a maximum of 128 bytes including the irgating null character.

GenlCam_Standard.doc Page 33 of 46

GEN<i>CAM P

Version 1.0 Standard - g g

<StringReg Name="ModelName">
<Address>0x1234</Address>
<Length>128</Length>
<AccessMode>RO</AccessMode>
<pPort>Device</pPort>
</StringReg>

You can get and set a string through I®iing interface.

2.8.12 SwissKnife, IntSwissKnife, Converter, and IntConverter

To do mathematical computations within GenlCam, $m@ssKnifenode dealing with float
numbers and thintSwissKnifenode dealing with integers have been introducexh Biave
the same syntax.

The following example shows how the product of tmombers is computed. TH€TimesY
node exposes dintegerinterface reading 504 (=12*42):

<IntSwissKnife Name="XTimesY">
<pVariable Name="X">XValue</pVariable>

<Formula>X*Y</Formula>
</IntSwissKnife>

<Integer Name="XValue">
<Value>42</Value>
</Integer>

<Integer Name="YValue">
<Value>12</Value>
</Integer>

The <Formula> element contains a mathematical formula thatreder to variables defined
by <pVariable> elements which point to an linteger node and haWame attribute that
defines the name of the variable inside the formlitee variable name must be upper case.

The Swiss knife used in the reference implememasayuite powerful. However, to simplify

the task for people wanting to do their own impletagon, the standard only allows a
restricted set of mathematical operations. Theofadlhg operations are supported by the
standard:

@) brackets

+-*/ addition, subtraction, multiplication, dson
% remainder

** power

&N~ bitwise and / or / xor / not

<>=><<=>= |ogical relations not equal / equal greater / less /
less of equal / greater or equal

GenlCam_Standard.doc Page 34 of 46

GEN<I>CAM

Version 1.0 Standard
&& || logical and / or
<< >> shift left, shift right

Conditional operator:
<condition> ? <true expr.> : <false expr.>
Functions:
SGN, NEG,
Functions present only with the SwissKnife butwidh the IntSwissKnife:
ATAN, COS, SIN, TAN, ABS, EXP, LN, LG, SQRT,
TRUNC, FLOOR, CEIL, ROUND(x, precision),
ASIN, ACOS, SGN, NEG, E, PI

When embedding formulas in XML files the problensas that the characters <, >, and &
cannot be used directly because they are parteoXtL syntax. There are two possible
solutions for that problem.

First you can escape these letters as follows:
< becomes < (It = thess than)
> becomes > (gt = greater than)
& becomes & (amp = ampersand)
As a result the formul>0) && (x<10) becomes
<formula>(x > 0) && (x < 10)</formula >

Alternatively you can declare the whole formula ram-XML-text by bracketing it with
<I[CDATA[and]> . The formula then becomes:

<formula><!/[CDATA[(x>0) && (x<10)]]>/formula>

While the interface of th&wissKnifeis read only theConverterworks bi-directionally. It
implements anFloat interface, looks a bit like th&wissKnifebut contains an additioal
<pValue> element which can point to dimtegeror IFloat interface. It has two formulas: the
<FormulaFron» describes how to make the float from the int ahd <~ormulaTo>
describes how to make the int from the float. Tigope> entry indicates if the formula is
monotonouslyincreasingor Decreasingif it is Varying (in this case the full number range is
used), or if the slope is determined infutomaticway by probing the function.

The following example shows a Converter which cotep@an absolute shutter value (a float)
by multiplying a raw shutter value (an integer)wét time base (another integer).

GenlCam_Standard.doc Page 35 of 46

GEN<I>CAM

Version 1.0 Standard

<Converter Name="ShutterAbs">
<pVariable Name="TIMEBASE">TimeBase</pVariable>
<FormulaTo> FROM / TIMEBASE </FormulaTo>
<FormulaFrom> TO * TIMEBASE </FormulaFrom>
<pValue>ShutterRaw</pValue>
<Slope>Increasing</Slope>

</Converter>

<Integer Name="ShutterRaw">
<Value>2</Value>
</Integer>

<Integer Name="TimeBase">
<Value>10</Value>
</Integer>

The IntConverterworks like the Converter but implementslanegerinterface.

2.8.13 ConfRom, TextDesc, and IntKey

The DCAM standard for 1394 cameras implements a Configurd®OM that is a tree-like
data structure defined in tHEEE 1212 standard Its main purpose in the context of a
camera is to expose the model name, vendor nameugbported interface standard version,
and the base address for the DCAM standard reditek. Due to the special layout of an
IEEE 1212 compliant Configuration ROM, a speci@nfROMnode has been introduced to
give access to all of this information.

The following example searches for a unit directatith the unit ID given in the Wnit>
element that describes a DCAM compliant cameradénthis unit directory, three entries are
picked and made available as sub-nodes. TikKey> CommandRegBaselement will
transform to a node with thEnteger interface reading the base address for the DCAM
registers. The ®extDese VendorNameand ModelNameelements transform to nodes with
the IString interface reading the vendor and the model nantieeofamera. The hex numbers

in the elements are the respectkey valuesthat the entries are stored with in the unit
directory.

’ Note that the strings inside the ConfigurationNR@re not required to be null-terminated;
see |IEEE 1212.

GenlCam_Standard.doc Page 36 of 46

GEN<I>CAM

Version 1.0 Standard

<Category Name="Root">
<pFeature>CommandRegBase</pFeature>
<pFeature>VendorName</pFeature>
<pFeature>ModelName</pFeature>
</Category>

<ConfRom Name="ConfRom">
<Unit>0x00A02D</Unit>
<Address>0x400</Address>
<pAddress>InitiaINodeSpace</pAddress>
<Length>0x400</Length>
<pPort>Device</pPort>
<IntkKey Name="CommandRegBase">0x40</IntKey>
<TextDesc Name="VendorName">0x81</TextDesc>
<TextDesc Name="ModelName">0x82</TextDesc>
</ConfRom>

<Integer Name="InitiaINodeSpace">
<Value>0xFFFFF0000000</Value>
</Integer>

Note that a ConfROM node has\ddress, <pAddress, <IntSwissKnife, <Lengtth», and
<pPort> elements that have the same meaning as with Bégstergsee section 2.8.3).

The typical implementation will create separateastbr the mtKey> and the ¥extDese
elements that are given the name denoted in thpecdge entry’sName attribute, a
<pl212Parser element pointing to the ConfROM node and key> element with the
respective key values.

2.8.14 DcamLock and SmartFeature

Currently, most standard register layouts are fixezthanisms, and methods are required to
give access to custom features not defined in tdredard. GenlCam currently supports two
access mechanisms.

The DcamLocknode can retrieve the address of a smart featyesed according to the
DCAM advanced features mechanism. It inherits thements and attributes from the
Register node. The following example unlocks an advancedABICfeature with a
<FeaturelD> element of 0x0030533B73C3 where 0x0838% vendor ID and 0x3B73C3 is
a feature ID defined by that vendor. The value @him <Timeout> element means that the
feature will not unlock automatically.

<AdvFeatureLock Name="BaslerAdvFeatureLock">
<FeaturelD>0x0030533B73C3</FeaturelD>
<Timeout>0</Timeout>
<Address>0xfffff2f00000</Address>
<Length>8</Length>
<AccessMode>RW</AccessMode>
<pPort>Device</pPort>

</AdvFeaturelLock>

GenlCam_Standard.doc Page 37 of 46

GEN<I>CAM

Version 1.0 Standard

The SmartFeaturenode can retrieve the address of a smart feathemwt is given a global
unique identifier (GUID) describing that featuretire <FeaturelD> element. It also inherits
the elements and attributes from tRegisternode. The following example retrieves the
address of a smart feature with a GUID of {5590D8#84-11D8-8447-00105A5BAES55}:

<SmartFeature Name="TimeStampAdr">
<FeaturelD>5590D58E - 1B84 - 11D8 - 8447 - 00105A 5BAES5</FeaturelD>
<Address>0xfffff2f00010</Address>
<pPort>Device</pPort>

</SmartFeature>

2.8.15 Port

ThePort object is just a proxy that forwards Read and &\dlls to the transport layer. Note,
however, that the proxy has all of the propertiesadNode For example, it can be “not
present.” This will tell all dependent nodes the transport layer driver is currently not open
and as a result, all dependent features will autically also be “not present.” Another
example would be the implementation of a useramtdr. If a user set is loaded from flash
ROM inside the camera, all features inside the rgrd@h must be invalidated. This can be
achieved by simply invalidating the Port node, whio turn can be automated using a
<plnvalidator> linked to theReadUserSdeature node.

If the transport layer is restricted to a maximalick length or needs special alignment, e.g.,
quadlet-wise, the transport layer implementatiorsihamulate the IPort interface by breaking
down calls longer than the maximum chunk lengtb multiple calls and must pad calls not
fitting the necessary alignment. In order to suppertain types of quadlet based interface the
<SwapEndianess> element has been introducedrgéds true the endianess of each quadlet
must be swapped before exposing the data to Geni@Gathe IPort interface.

The Port node inherits the elements and attributes ofNlbdenode. In addition, it can have a
<ChunkID> element that identifies a chunk of data in a é&uffrhis chunk may be mapped to
a virtual port that does not give access to adewice, but rather to the chunk of data residing
in memory.

<Port Name="Device" NameSpace="Standard">
<ChunkID>4711</ChunkID>
</Port>

2.8.16 Group element

The <Group> element helps to make a large camera descrifiiermore readable. The
element can be used to bundle blocks of nodeshtegas shown in the following example:

<Category Name="Root">
<pFeature>Analog</pFeature>
<pFeature>Trigger</pFeature>
</Category>

<Group Comment="Analog section">
<Category Name="Analog">
<pFeature>Shutter</pFeature>
<pFeature>Gain</pFeature>

GenlCam_Standard.doc Page 38 of 46

GEN<i>CAM P

Version 1.0 Standard - g g

<pFeature>Offset</pFeature>
</Category>

<IntReg Name="Shutter">
<!l-- more elements -->

</IntReg>

<IntReg Name="Gain">
<l-- more elements -->

</IntReg>

<IntReg Name="Offset">
<l-- more elements -->

</IntReg>

</Group>

<Group Comment="Trigger section">
<l-- more elements -->
</Group>

A typical XML editor will be able to hide the comiis of a group as shown in the following
screen shot:

7 Category Name=Root

“ Group

= Comment Analog section
7 Category Name=Analog
T IntReg Name=Shutter

7 IntReg Name=Gain

|| T IntReg Name=0ffset

| TGroup Comment=Trigger section

The <Group> node has &ommentttribute, which is displayed by the editor whiea group

is folded away. Groups can be nested in any deéfitey do not have any meaning with
respect of the functionality of the camera. If taenera description file is interpreted, they are
just stripped off.

2.9 Available Interfaces

This section uses@seudo codenotation to list the most important interfacesraoduced in
section 2.3. An actual implementation can have mugehods per interface, e.g., in parallel to
a SetValue(value) method, an operator=(value) ntetmight be implemented that maps
directly to the SetValue() method. Also, the actuatiable types may differ, e.g., for the
pseudo code type string, the actual implementatimht be CString, std::string, or something
else.

A more thorough explanation is found in section 2.8
2.9.1 lIinteger Interface

= int64 GetValug() — returns the value
= void SetValug int64) — sets the value
= int64 GetMin () — returns the minimum

GenlCam_Standard.doc Page 39 of 46

GEN<I>CAM

Version 1.0 Standard

int64 GetMax() — returns the maximum
int64 Getlnc() — returns the increment
ERepresentatioGetRepresentatiorf) — returns the representation as an enumeration

2.9.2 IFloat Interface

doubleGetValue() — returns the value

void SetValug double) — sets the value

doubleGetMin () — returns the minimum

doubleGetMax() — returns the maximum

ERepresentatio@etRepresentatiorf) — returns the representation as an enumeration
string GetUnit() — returns the unit

2.9.3 IString Interface

stringGetValue() — returns the value
void SetValug string) — sets the value
int64 GetMaxLenght() — gets the maximum length of the string

2.9.4 |Enumeration Interface

string GetStringValue() — returns the enumeration value as a string

void SetStringValug(string) — sets the enumeration value as a string

int64 GetIntValue () — returns the index value corresponding to thengeration value
void SetIntValue(int64) — sets the index value correspondindgnéognumeration value

EnumEntryListGetEntries() — returns a list of pointers to the EnumEntryde® of the
enumeration

2.9.5 ICommand Interface

void Executd) — submits the command

booleanisDong() — returns true if the command has been exectdésk as long as it still
executes.

2.9.6 IBoolean Interface

booleanGetValue() — returns the value
void SetValug boolean) — sets the value

2.9.7 IRegister Interface

void Get(uint8 *pBuffer, int64 Length) — gets the regisecontent to a buffer
void Se{ uint8 *pBuffer, int64 Length) — sets the regrgecontent from a buffer

GenlCam_Standard.doc Page 40 of 46

-
..

GEN<I>CAM

Version 1.0 Standard - g g

int64 GetAddresy) — gets the register’'s address

int64 GetLength() — gets the register’s length in bytes

2.9.8 ICategory Interface

= NodeListGetFeatureg) — returns a list of pointers to the feature reode

2.9.9 IPort Interface

= void Read uint8 *pBuffer, int64 Address, int64 Length) eaids an array of bytes located
in the device at [Address, Address+Length]

= void Write (uint8 *pBuffer, int64 Address, int64 Length) fites an array of bytes to the
device at [Address, Address+Length]

2.9.10 ISelector Interface

booleanisSelectoK) — indicates if that node is a selector

= NodeListGetSelectedFeature3 — returns a list of pointers to the feature reoadich are
selected by the current node.

2.10 Standard Features Lists

The GenApi lets you define abstract features adegrtéb their name, interface type, and
meaning and make them accessible by a unified ABI@UI. However, GenApi does not
provide defined sets of features for certain devgmach as cameras. Thessandard feature
lists are provided separately. GenApi, however, suppthtse lists by means of the
NameSpacand theStandardNameSpaexdtributes (see section 2.8.1).

Although the groups creating standard features hatve few restrictions to their work, there
are a few features defined by GenApi itself, andytimust be present in each standard
features list:

Interface Name Meaning
ICategory Root The root of the feature tree
IPort Device The default port of the device

IBoolean | TLParamsLocked Implements a flag served by the transport layer
indication that it is set up for streaming.

GenlCam_Standard.doc Page 41 of 46

GEN<I>CAM

Version 1.0

Standard

3

3 GenTL Module — Grabbing Images

This GenTL module is still under construction.

GenlCam_Standard.doc

Page 42 of 46

-
..

GEN<I>CAM

Version 1.0 Standard - g g !

4 Acknowledgements

The following companies and individuals have pgtited in the elaboration of the GenlCam
Standard:

Company Represented by

Basler Friedrich Dierks (editor GenApi), Hartmutbédung, Margret
Albrecht, Alexander Happe

DALSA Coreco Eric Carey, Peifang Zhou

e2v semiconductors Frédéric Mathieu

JAI Pulnix Karsten Ingeman Christensen, Loai Zejidithael Krag

Leutron Vision Stefan Thommen, Jan Becvar

Matrox Imaging Stephane Maurice

MVTec Software Christoph Zierl, Milan Ruder

National Instruments| Johann Scholtz

Pleora Alain Rivard, Francois Gobell

Stemmer Imaging Rupert Stelz (editor Transport bgy®ascha Dorenbeck

5 Rights and Trademarks

The European Machine Vision Association owns thelVA, GenlCam Standard Compliant"

logo. Any company can obtain, free of charge, &nge to use the "EMVA GenlCam

Standard Compliant” logo either for cameras thatuise a GenlCam compliant camera
description file of for software supporting theergretation of GenlCam compliant camera
description files.

Licensees guarantee that they meet the terms ofnuee relevant version of the EMVA
GenlCam standard. Licensed users will self-cetttify compliance of their cameras and/or
software with which the "EMVA GenlCam Standard Cdiant" logo is used. The licensee
must check compliance with the relevant versiokMIVA GenlCam standard at least once a
year. When displayed online, the logo must be featwith a link to EMVA standardization
web page.

EMVA will not be liable for implementations that dwmt comply with the standard or for
damage resulting therefrom. EMVA reserves the rightvithdraw the granted license at any
time without giving reasons.

GenlCam_Standard.doc Page 43 of 46

GEN<I>CAM

Version 1.0 Standard - g
6 Index
—A— pEnumEntry 33
access mode 11 pSelected 33
locked 12 pValue 33
not available 12 Value 33
not implemented 12 example

API
camera 6
transport layer 6
arrays
accessing 27
multi-dimensional 28
B
Boolean 31
OffValue 31
OnValue 31
—C—
camera description file 6
Category 23
pFeature 23
Command 32
CommandValue 32
pCommandValue 32
PollingTime 32
pValue 32
Value 32
ConfROM 36
TextDesc 36
Unit 36
ConfROMIntKey 36
Converter 35
FormulaFrom 35
FormulaTo 35

pValue 35
Slope 35
—D—

DcamLock 37
FeaturelD 37
Timeout 37

Device 41

—F—

EnumEntry 33
Symbolic 33
Value 33

Enumeration 33
EnumEntry 33

GenlCam_Standard.doc

area of interest
computing the maximum values 17
coupled with Binning 18
simple 16
basic structure of a camera description
file 7
category tree 23
Gamma feature being implemented or
not 15
look-up table (LUT) 27
reading and writing a value 10
struct 26
trigger polarity being temporary not
available 12
—F—
feature node 24
Float 32
Max 32
Min 32
pMax 32
pMin 32
pValue 32
Representation 32
Unit 32
Value 32
FloatReg 32
Endianess 32
—G—
GenApi module 6
GenTL module 42
Group element 38
Comment attribute 39
R —
IBoolean interface 31, 40
ICategory interface 23, 41
ICommand interface 32, 40
IEnumeration interface 33, 40
IFloat interface 32, 40
linteger interface 28, 39, 40
linteger Interface 39

Page 44 of 46

GEN<I>CAM

Version 1.0 Standard

implementation node 24
indirect addressing 26
IntConverter see Converter
Integer 30
Inc 30
Max 30
Min 30
pinc 30
pMax 30
pMin 30
pSelected 30
pValue 30
Representation 30
Value 30
Intkey 37
Key 37
pl212Parser 37
IntReg 28
Endianess 29
pSelected 30
Sign 29
IntSwissKnife see SwissKnife
IPort Interface 41
IRegister interface 25
IRegister Interface 40
ISelector interface 28, 41
IString interface 33, 40
—M—
MaskedIntReg 29
Bit 29
LSB 29
MSB 29
pSelected 30
—N—
Node 21
Description 22
DisplayName 22
EventID 23
Extension 22
ImposedAccessMode 23
Name 22
NameSpace 22
pAlias 23
plnvalidator 26
plsAvailable 23
plsimplemented 23
plsLocked 23

GenlCam_Standard.doc

ToolTip 22
Visibility 22

—pP—

Port 38
ChunkID 38

R

reference implementation 7

Register 25
AccessMode 25
Address 25
Cacheable 25
IntSwissKnife 25
Length 25
pAddress 25
pindex 25
PollingTime 25
pPort 25

RegisterDescription 19
MajorVersion 20
MinorVersion 20
ModelName 19
ProductGuid 21
schemalocation 20
SchemaMajorVersion 20
SchemaMinorVersion 20
SchemaSubMinorVersion 20
StandardNameSpace 19
SubMinorVersion 20
ToolTip 19
VendorName 19
VersionGuid 21

Root 41

—S—

selector 28

SmartFeature 38
FeaturelD 38

standard feature list 41

StringReg 33

StructReg 30
Comment 31
StructEntry 31

SwissKnife 34
Formula 34
mathematical operations 34
pVariable 34

—T—

TextDesc 37

Page 45 of 46

GEN<I>CAM

-
..

Version 1.0

Standard

IR

Key 37

pl212Parser 37

GenlCam_Standard.doc

—X—
XML schema 9

Page 46 of 46

