GENeric programming Interface for CAMeras

Dr. Friedrich Dierks, Basler AG
Secretary of the GenICam Standard Group
Basler Head of Software Development Components
Questions Answered in this Presentation

- Why GenICam Standard?
- How does it work?
- How is the standard committee organized?
- Who is driving GenICam?
- What is the status and the roadmap?
- How can you become part of GenICam?
- What are your benefits?
Situation Yesterday

Customers want to use...
- ...any image processing library
- ...any camera
- ...any smart feature in the camera

Camera Vendors want to...
- ...sell to every customer
- ...supply their smart features

Library Vendors have to...
- ...support all cameras
- ...support all smart features

- This is expensive
- This reduces time-to-market
- This prevents market growth
Situation Today

GenICam can connect the Customer:
- ...to all cameras
- ...through all libraries
- ...giving access to all smart features

GenICam can support:
- ...any interface technology
- ...products from any vendor
- ...products with different register layout

GenICam is easy to integrate for:
- ...customers
- ...camera vendors
- ...software library vendors
- ...frame grabber / driver vendors
GenICam in an NutShell

➔ GenICam provides a Unified Programming Interface for machine vision cameras
GenICam Use Cases

- Configuring the Camera
- Grabbing Images
- Providing a Graphical User Interface
- Delivering Events
- Transmitting Extra Image Data

Customer Viewpoint
Configuring the Camera

User API
- C++ programming interface

  ```cpp
  if( IsWritable(Camera.Gain) )
    Camera.Gain = 42;
  ```
- Provided by freely available GenICam reference implementation
- Other programming languages can be supported, e.g., .NET

Transport Layer API
- Read / Write Register
- Provided by driver vendors (small adapter required)
- Send / Receive ASCII Command extension under planning

Use Case

User API

Set Gain = 42

TRANSPORT LAYER API

Write Register Address, Len, Data

1394, GigE Vision, Camera Link, etc.
Grabbing Images

Grab API

- Abstract C++ programming interface
 - Get device names
 - Create camera access object
 - Configure camera
 - Queue buffers
 - Start acquisition
 - Wait for buffers

- Implemented by transport layer DLLs

- Provided by driver vendors (adapter required)

- GenICam provides services to
 - register transport layer DLLs
 - enumerate devices and
 - instantiate camera access objects
Providing a Graphical User Interface

GUI support
- Feature tree
- Widgets support
 - **Slider** → value, min, max
 - **Drop-Down Box** → list of values
 - **Edit Control** → From/ToString
 - etc.
- Access mode information
 → RW, RO, WO, …
- Full model / view support
 → callback if a feature changes

User API

[Image of GUI support features]

[Image of User API diagram]
Delivering Events

Asynchronous Callbacks

- Cameras can deliver event packets, e.g. when the exposure has finished
- Users can register a callback

```c
void Callback( INode* pNode )
{ printf("Hi!"); }

Register( Camera.ExposureEnd, &Callback );
```

- Events are identified by an EventID
- If an event packet arrives GenICam fires a callback on all nodes with matching EventID
- Data coming with events is also delivered.
Transmitting Extra Image Data

Chunked Data Stream

- Images can have chunks of additional data appended, e.g. a time stamp.
- GenICam makes this data accessible

```cpp
if( IsReadable( Camera.TimeStamp ) )
    cout << Camera.TimeStamp();
```

- The transport layer “shows” each buffer to GenICam.
- GenICam interprets the chunks as read only registers identified by a ChunkID
Making GenICam Compatible Products

- Features
- Making Cameras Interchangeable
- Reference Implementation
- License Issues

Vendor Viewpoint
Camera Description File

- Describes how features ("Gain") map to registers (or commands)
- XML format with a syntax defined in the GenICam standard
- Static use case: a code generator creates a camera specific C++ class at compile-time
- Dynamic use case: the program interprets the XML file at run-time
- Camera description files are provided by the camera vendor
Feature Types

- Each feature has a type that is defined by an abstract interface
- Common types with associated controls are:
 - Integer, Float \(\Rightarrow\) slider
 - String \(\Rightarrow\) edit control
 - Enumeration \(\Rightarrow\) drop down box
 - Boolean \(\Rightarrow\) check box
- With GenICam camera vendors can use whatever feature names, types and behavior they like.
- As a consequence GenICam alone does not make cameras interchangeable!

\(\Rightarrow\) Standard Feature List is required

Example: Integer interface

Camera.Gain.

- FromString
- GetAccessMode
- GetInc
- GetMax
- GetMin
- GetNode
- GetRepresentation
- GetValue
- operator ()
- operator *
- operator =
- SetValue
- ToString
Standard Feature List

For **GigE Vision** cameras a list of ~180 standard features is provided.

- The GigE Vision standard says...

 ...*any GigE Vision device **MUST** provide an XML device description file compliant to the syntax of the GenApi module of GenICam™.*

- This list is organized along use cases:
 - Image size control
 - Acquisition and trigger controls
 - Digital IO
 - Analog Controls
 - ...

- Only 7 features are mandatory, the others are just recommended

For **1394 IIDC** cameras the same list of features can be used with only a few adaptations.

- A common XML file is still under construction
GenICam Organization

- Standard Committee
- Supporting Companies
- Status & Roadmap
- Benefits

Industry Viewpoint
GenICam Standard Committee

- GenICam is hosted by the European Machine Vision Association (EMVA)
- **Contributing members** are working(!) on the standard and the reference implementation. Only contributing members can **vote**.
- **Associated members** agree to the GenICam rules. They get full access to the source code and are placed on the mailing list but **cannot vote**.
- **Interested outsiders** get the GenICam run-time and the released standard documents
- You can **register** at www.genicam.org

*) as of b/o May 2006

Contributing Members
- currently 8 companies -

Associated Members
- currently 20 companies -

Interested Outsiders

no fees!
GenICam Members
Status\(^*)\) and Roadmap

GenApi Module

- Standard and reference implementation v1.0 are released and are available on www.genicam.org.
- The number of GenICam aware products is constantly growing. Among them are:
 - All GigE Vision compliant cameras
 - Many of the image procession software libraries
 - Some 1394 cameras

GenTL Module

- Defined interfaces and working adapters for GigE Vision, 1394, and Camera Link
- Draft standard expected Q1 2007

Standard Feature List

- GigE Vision : v1.0 is released
- 1394 IIDC : under construction

\(^*)\ cw36 / 2006
Benefits

Customers

- Combine
 → any camera with
 → any smart feature with
 → any software library
- Mix interface technologies and cameras from different vendors

Vendors

- Enlarge your market
- Reduce your cost
- Speed up time-to-market
Thank you for your attention!

Contact me ➔ friedrich.dierks@baslerweb.com
Get information ➔ www.genicam.org