
Introduction to the GenICam Standard

Dr. Fritz Dierks
Chief Engineer & Head of SW Development

Basler AG

Chairman of the GenICam standard committee

Why GenICam?

provides plug&play to machine vision cameras

Customers

HSLink

Driver Vision Library

Camera

Vendors

PC Software

Vendors

Feature Access

GenICam Members
(2006) : 9 � 20 � 47 � 60 �77 : (Jan 2010)

Core Team

Investments in GenICam

Committee Work
– 7 years of intense work
– 17 international meetings
– ~15 companies per meeting*)

Common Code Base
– Used by nearly all companies

but not part of the standard
– Written in C++
– Supports Win32 / Win64 with

Visual Studio 7.1 / 8.0 / 9.0
– Supports Linux32 / Linux64

with gcc>=4.0, glibc>=2.3.5
– Strict focus on quality

*) since 2005

Investments**)

– Meetings >300 k€

– Common code base >500 k€

**) rough estimate; does not include product development

Interfaces Supporting GenICam

Cost for adding GenICam support*)

– Introducing GenICam for the first interface : ~50 k€

– adding another interface to existing GenICam support : ~ 10 k€

����

?

2.0

����

����
(�)

����
HSLink

�

*) very(!) rough estimate

+

?

Some Questions

• What makes GenICam attractive?
– Serves a market need

– Has hit a window of opportunity

– Has mechanisms to evolve quickly

• Which Modules does GenICam Consist of?
– Camera Configuration (modules GenApi & SFNC)

– Image Acquisition (module GenTL)

• What is the Status and Roadmap for GenICam?

� Let‘s have a look at the details

History of Camera Configuration

Standard = video signal + DIP switches
� plug&play, but limited video formats only

Sensor ADC + Grabber Driver VisionLib App

Standard = serial port, no defined protocol
���� no plug&play

Sensor Grabber Driver VisionLibADC App

Standard = fixed register layout
���� plug&play

Sensor Driver VisionLibADC AppNIC

Problems with Fixed Register Layouts (1/2)

No Business Model for Custom Feature Support

– Custom features require expensive manual coding in the driver

– It hardly makes sense for a driver vendor to support camera custom features. Example:

Camera vendor : 400 cam/yr * 1000 €/cam = 400 k€/yr � sweet deal ☺☺☺☺

Driver vendor : 400 license/yr * 100 €/cam = 40 k€/yr � sour deal ����

Workaround: Cameras Come with their Own (Free) Driver

– Only for network based cameras

– Proprietary solution, no integration into vision library

– Free drivers puts a lot of pressure on driver/VisionLib business model

Camera NIC App VisionLibDriver

Camera AppVisionLibDriverNIC

���� Missing Custom Feature Support

Problems of Fixed Register Layouts (2/2)

Fixed Register Layout Contains Lots of Implementation Details
(bit depth, feature inquiry, min/max/inc,)

���� Slow Standard Evolution

– Exhaustive discussion about bits & bytes

– Each company is fighting for their specific layout

– Only really large companies can start a standard layout (1394 IIDC = Sony)

���� No Migration Path from Custom to Standard Features

– New features are implemented as custom features for sake of speed

– If feature is later standardized and gets a different register layout
� no adoption possible because of backward compatibility

– Proposing standard features makes not too much sense for a company

���� Standard Defines Too Many Details

The Window of Opportunity

GigE Vision Standard

− Kick-off meeting June 2003

− Every company tried to get their
proprietary register layout standardized

− After one year no conclusion was
reached

���� committee was stuck ����

Escape Route

− Let every camera have their own
register layout

− Define standard features abstractly

− Have a camera description file in
XML format with describes how to map
the abstract features to the registers

���� Birth of GenICam

Standardized interface IPort
- ReadRegister(…)
- WriteRegister(…)

HSLink

Camera Driver VisionLib AppXML

GenICam Modules GenApi and SFNC

GenApi Module

• Defines the XML language of the
camera description file

• Supported types: Integer, Float,
Enumeration, Bool, String

• Each type corresponds to an interface
with methods like GetValue, SetValue,
GetMin, GetMax, etc.

• Camera has a set of features

• Each feature has a name, a type and a
meaning � abstract

• Description syntax is the same for
custom and standard features

Example
• Name = „Gain“

• Type = IInteger

• Meaning = camera amplification

SFNC*) Module

• Defines a set of abstract features
forming the ideal camera

• No details, just the name, type
and meaning

• List has grown to >400 features

� committee was un-stuck ☺

*) SFNC = Standard Feature Naming Convention
���� Full Custom Feature Support

How Things Worked Out

Original Assumption

• Customers use the native GenICam

API

• XML file contains a ~1:1 mapping of

registers to features

What Happened in Reality

• Library vendors used GenICam as

engine under the hood

• Customers got the functionality of

GenICam but through the libraries’

native API

• XML file is used to map legacy

registers to SFNC features

small

XML

complex
XML

VisionLib

native GenICam API

proprietary*) API

*) some use GenICam natively; many have a back-door

How GenICam can Evolve Very Fast

Voting Rules

– Membership to GenICam committee is free

– 1..2 meetings per year; homework between meetings

– Only companies contributing homework can vote*)

� Who invests money gets in the driver seat

Migration Path from Custom to Standard Features

– New features are implemented by some company as custom feature
� immediate business

– The feature can be added to SFNC list later � adds proven features

– Custom features become standard by changing an attribute in XML file

*) GigE Vision and CameraLink borrowed these rules recently

GenTL Module – The Grab Interface

Modules:

– GenApi/SFNC : camera configuration

– GenTL : enumerating devices, retrieving XML file, grabbing images

Why GenTL?

– Typically camera vendors have drivers for their own products

– Integrating a driver into an image processing library requires quite some effort

– With GenTL comes plug&play: just install the driver and the library can use it

Camera Driver VisionLib AppXML

Set of standard interfaces
- C headers
- helper classes

The GenTL Business Case

Why is there so little GenTL Support?

– Splits responsibility on the PC side (support)

– Operating system support depends on camera vendor

– Once most library vendors have their own driver there is not much GenTL demand any more

– GenTL missed the first window of opportunity (by Nov 2008 everybody had a driver)

Now there is a New Window of Opportunity!

– Lots of new interfaces are evolving (CoaXPress, CameraLink HS, USB 2.0/3.0, LightPeak, …)

– It is too expensive for everyone to develop their own drivers / frame grabbers

– Solution: Make basic GenTL support mandatory to the transport layer standards

– Benefit: Immediate access to image processing libraries even if the user base is still small

– Good news: there is growing activity!

Camera NIC AppVisionLibDriver

PC

���� Overcome the Chicken & Egg problem

Status and Roadmap

GenICam v2.0
– Released November ‘09

– Maintenance release v2.0.1 February ‘10

– Contains GenApi v2.0, SFNC v1.3, GenTL v1.1

GenICam v2.1 Release Candidate
– GenApi � maintenance

– CLProcotol v1.0 � CameraLink support

– SFNC v1.4 � Updated

– GenTL v1.2 � Updated

What comes next?
– Improving documentation (extending tutorial)

– Supporting more compilers (VS100)

– Supporting more platforms

– Improving support for frame grabber based
system � any feedback welcome ☺

New

Dr. Fritz Dierks
Chief Engineer
& Head of SW Development

Basler AG

An der Strusbek 60-62
22926 Ahrensburg
Germany

Phone: +49-4102-463-381
Email: friedrich.dierks@baslerweb.com

www.baslerweb.com

