GenICam Hiroshima Meeting Minutes – 2017-10-16/17

1. Welcome (Watanabe-san, JIIA)
2. Agenda Review (Fritz Dierks, Basler)
3. Homework Status/Voting Members (Fritz Dierks, Basler)
 - Active Silicon – GenSP
 - Allied Vision – GenSP, GenTL Validation Framework
 - AVAL DATA – GenApi/Multi-language
 - Automation Technology – Python binding
 - Basler – Python bindings,
 - Baumer – CLProtocol, SFNC, GenTL Producer Framework
 - Gardasoft – Lighting proposal
 - IMAC – Lighting proposal
 - MATRIX VISION – GenApi Persistence
 - Matrox – SFNC, GenSP
 - MVTec – GenSP, Administration, GenTL Producer Framework
 - NI – GenSP, FWUpdate
 - Pleora – PFNC image generator
 - SICK – GenSP
 - Silicon Software – GenSP, OpenVX, Going Embedded SC2 proposal
 - STEMMER IMAGING – Modular Logging, GenSP, GenApi C-bindings
 - Teledyne DALSA – GenApi Persistence&Transactions
 - Toshiba TELI – GenTL Python bindings

4. GenApi (Fritz Dierks, Basler)
 - Overview
 - Changes Ready for v3.1
 - Transaction support
 - Caching MUXed registers
 - Retrieving Value Influencing Children
 - Speeding up MathParser
 - Open Topics for v3.1
 - See below
 - Next Steps
 - Transaction support (Eric Bourbonnais, Teledyne DALSA)
 - Stacking register write by IPortStacked interface
 - Bypassing validations when writing a group of features (e.g., AOI)
 - Decision: Go for option 1, see presentation
 - Caching improvements (Eric Bourbonnais, Teledyne DALSA)
 - pError cannot have cache
 - Retrieving Value Influencing Children (Eric Bourbonnais, Teledyne DALSA)
 - INode::GetProperty is very slow (since GenAPI 3.0)
 - Introduce INode::GetChildren method
• Speeding Up the MathParser
 ▪ Code has been merged now

• C-binding (Sascha Dorenbeck, STEMMER IMAGING)
 ▪ Use cases
 ➢ Stable application binary interface
 ➢ Enable static linking
 ➢ Enable dynamic loading
 ▪ Scope
 ➢ GenApi Module only
 ➢ Make only user interface accessible
 ➢ Keep it minimal
 ▪ Current state
 ➢ Development branch with GenApiC and GenApiTestC
 ➢ Library, e.g. GenApiC_v3.0
 ▪ Future steps
 ➢ Identify what is missing, looking for feedback!
 ➢ Header-only C++ wrapper
 ➢ Refactor use use C or header-only C++
 ➢ Target the infamous “Glue”

• Multi-Language support (Masahide Matsubara, AVAL DATA)
 ▪ Idea: Descriptions, tooltips, display names by e.g., <Description_L lang=”de”>
 ▪ Get/SetLocalizedID globally
 ▪ to be added in SVN dev branch soon
 ▪ increases XML file size
 ▪ -> Localizing the SFNC display names by homework packages

• Log4CPP loading (Silvio Voitzsch, Baumer)
 ▪ New search order for CLAllSerial

• Stop probing serial devices (Silvio Voitzsch, Baumer)
 ▪ Add function StopProbing to CLProtocol::CCLPort
 ▪ Extend GenCP by CLP_STOP_PROBE_DEVICE

• Modular logging (Quang Nguyen, STEMMER IMAGING)
 ▪ Status quo – log4cpp: category, priority, message
 ▪ Proposal 1: new logging module
 ▪ Proposal 2: custom appender (keep the infrastructure)
 ▪ Decision: go for proposal 2, more homework to be done

• Firmware Upload (Thies Möller, Basler)
 ▪ Already tested by several companies, more to be expected during plugfest
 ▪ Naming: New GenICam module “FWUpdate” (analog to “CLProtocol”)
 ▪ Will be released with reference implementation as part of GenICam v3.1
 ▪ Next steps:
 ➢ Final adjustments (e.g., include diagram in introduction)
 ➢ Start ballot soon after the meeting

• Persisting selector sets (Stefan Battmer, MATRIX VISION)
 ▪ New CFeatureBagger class to persist all data

• Using GenICam with MIPI CSI-2 D-PHY (Tim Handschack, Allied Vision)
 ▪ CSI defines protocols for control and also pixel types
• CSI-2 (with C-PHY and D-PHY as physical layer), CSI-3 (with M-PHY)
• CSI-2 D-PHY is well adopted by embedded boards
• Bringing CSI-2 and GenICam together
 ➢ Control: Boxing of GenCP over I2C / CCI
 ➢ Streaming

• Open tickets
 • Multiple roots
 ➢ Proof of concept presented in Natick
 ➢ Still unclear what happens with existing implementations when using these kind of floating nodes, maybe to be clarified in spec
 • Using multiple GenApi versions in parallel
 • New Python bindings for GenApi
 ➢ See discussion in GenTL session

• New bug tickets
 • Resolve pragma warnings -> to be fixed for v3.1

• Roadmap
 • Finalize features reported in Hiroshima and fix open bugs
 • Start building RC
 • Release v3.1 e/o 2017

5. **Going Embedded SC2 - Image processing systems (Ralf Lay, Silicon Software)**
 • Description of dynamic formats for preprocessing
 ➢ Use of chunks: fixed size and number
 ➢ Use of chunks: Variable number of data elements
 ➢ Use of chunks: Two dimensional aspects
 ➢ Full dynamic data formats
 • Custom processing modules
 • Model for embedded camera, XML-merger approach
 • Next steps: further implementations
 • SC3: GenICam and OPC UA -> “OPC Vision”, hosted by VDMA
 ➢ Interaction between SC2/GenICam with SC3?

6. **GenCP (Rupert Stelz, STEMMER IMAGING)**
 • GenCP still in maintenance mode, see tickets and discussion forum

7. **GenTL (Rupert Stelz, STEMMER IMAGING)**
 • GenTL Validation Framework (Tim Handschack, Allied Vision)
 ➢ Bug fixes, in particular regarding long exposure times
 • MultiPart
 ➢ SFNC test feature proposal “TestPayloadFormat”
 • GenTL Producer Framework (Roman Moie, MVTec)
 ➢ Idea: Decouple GenTL core functionality from TL-specific code
 ➢ Starting point for new GenTL Producer implementations
 • Committed to GenICam repository as agreed in Natick
 • Maintain GenTL core by homework packages
• Feedback from other companies
 ➢ Activation of Multi-Part more SFNC-like -> already implemented
 ➢ Multile TL within one Producer
 ➢ Hooks for specific utilities (like GVCP library)
 ➢ Expose BufferNodemap
 ➢ Avoid double definition of custom features (in XML and code)
• New Trac component
• Python bindings (Kazunari Kudo, Toshiba Teli)
 ➢ New README.md for developers
 ➢ Documentation for API consumers
 ➢ Improvements on Usability
• Streams & Buffers vs. Flows (Rupert Stelz, STEMMER IMAGING)
 ➢ from a GenTL point of view
 ➢ Currently, GenSP introduces the so-called flow concept
 ➢ Flow is defined by the sender
 ➢ Flows match to GenTL concept
 ➢ Sub-buffers are a flow, forming flow-sets
 ➢ Instead of AnnounceBuffer then call AnnounceFlowSet
 ➢ Solving many use cases like different receivers, early processing, sequencer
 ➢ No more need for multipart and chunk data
 ➢ The interpretation of data will move to the consumer side (based on GenSP)
• Next steps:
 ➢ Wait for progress on GenSP
 ➢ Presumably big impact, thus, then go for GenTL v2.0

8. GenTL SFNC (Mattias Johannesson, SICK)
• GenTL SFNC still in maintenance mode, see tickets and discussion forum

9. GenSP (Stephane Maurice, Matrox Imaging)
• Status
 ➢ Descriptor structure, layout and fields were accepted by workgroup
 ➢ New notion of data Flow was introduced
 ➢ Official name not decided yet
• Container structure
 ➢ Container has Descriptor + Data
 ➢ Descriptor has Container Header and Component header(s)
• Component header fields and layout
 ➢ Part type specific section depending on content (e.g., JPEG, H.264 or 1D)
 ➢ No more extra Parts headers
 ➢ Component info section is of fixed size followed by Part type specific info
 ➢ Container is self-described, i.e., no need to interpret XML
• Various container scenarios
 ➢ 2D multispectral
 ➢ Compressed images (JPEG, H.264)
 ➢ 3D image (range, confidence, reflectance)
- 3D image (xyz planar point cloud, confidence, reflectance)
- 2D images sequence
- 2D image with metadata
- New SFNC feature GenSPDescriptor to fetch complete descriptor in binary format
- New SFNC feature GenSPStreamingMode (Default, Native, GenSP, MultiPart)
- Renaming “GenSP”
 - Avoid both the terms “Protocol” and “Payload” since both are not right
 - Proposal: Go for “GenDC” – Generic Data Container
 - Test vote looks good
- GenSP-to-Flow mapping (Eric Gross, NI)
 - Flows != Streams
 - On the wire, a GenSP payload is complete only when all flows are completed
 - Flows represent the lowest common level of transfer described by GenSP
- Rules of Flows
 - GenSP headers always in flow 0
 - Multiple components/parts may share the same flow
 - Headers are always before payloads if in same flow
 - Components/parts within the same flow are ordered as in header
- Configuring
 - Enabling flows by camera, end-user or SW library
 - Mapping of flows to user buffers is responsibility of receiver
- SFNC Features
 - ComponentPartSelector
 - ComponentPartFlowID
 - ComponentPartCurrentFlows
- Target milestones for next meeting (in Frankfurt May 2018)
 - Finalize GenSP Container Descriptor
 - Conclude on a common approach for the handling of variable scan/payload device producing GenSP Container
 - Study the mapping of the GenSP Container to the various TLs

10. SFNC (Stephane Maurice, Matrox Imaging)
- SFNC status
 - SFNC 2.3 released in May 2016
- Lighting Device Control mechanism using GenICam
 - New category LightingControl with features for source, ratings, brightness, ...
 - Already also reviewed by JIIA
 - Ready to be included in next SFNC release
- PFNC extensions (Eric Carey, Teledyne DALSA)
 - Multicomponents
 - Only describe the number of components, not the content
 - MnC pixel formats, e.g., M4C10p
 - Interpreting the content requires then additional information not covered within PFNC
 - Planar
 - Currently, defined by ‘_Planar’
- Regroup multiple components in same buffer, but in planar fashion
 - Introduce ‘Planar’ suffix (without underscore), e.g. M4C10pPlanar
 - 32-bit Pixel ID Fields
- Support of simultaneous non-compressed and compressed image streaming
 - Already possible by using RegionSelector combined with CompressionMode feature (per Region)
- Handling frame endings in linescan (Mattias Johannesson, SICK)
 - Proposal for new AcquisitionStopMode feature
 - Values are Normal, Immediate, ImmediateWithPadding
- Multi-Part test feature proposal (Mattias Johannesson, SICK)
 - New feature TestPayloadFormat with values Off and MulitPart
- TLParamsLocked mandatory before AcquisitionStart (Eric Bourbonnais, Teledyne DALSA)
 - New selector TLDynamicParamsSelector with values ImageSize, PixelFormatConstSize, PixelFormatDynamicSize, ExtendedPayload
 - New feature TLDynamicParamsEnable
- New SFNC features to help automate EMVA 1288 measurement (Kazunari Kudo, Toshiba Teli)
 - SensorPixelWidth
 - SensorPixelHeight
 - SensorName
 - Agreed in general, further review needed
- IEEE 1588 extended feature set proposal (Thies Möller, Basler)
 - GevIEEE1588DatasetLatch
 - Agreed to further review
- Next SFNC Release is v2.4 (as part of GenICam v3.1 release)

11. Marketing & Operations (Christoph Zierl, MVTec)
- Update on membership: nearly 200 companies, 18 with voting rights
- Introduced new status homework_done on Trac ticket workflow to indicate that homework has been done, but not completed
- Naming:
 - Proposal to rename GenSP with GenDC (Generic Data Container)
 - -> Decision: Yes, by 12 positive votes (and 4 abstains)
- Roadmap:
 - Go for GenICam 3.1 before next meeting
 - in particular reference implementation and SFNC v2.4
 - also small updates on GenCP and GenTL SFNC should be included

12. Homework session (Fritz Dierks, Basler)
- Go through homework list/items
- Next meeting:
 - 2018, May 14-18, hosted by Silicon Software at VDMA@Frankfurt, Germany