R
T?Ajt

GEN<I>CAM

GenlCam GenTL Standard

Version 1.4

GEN<I>CAM

GEN<i>CAM _),;é‘t
Version 14 GenTL Standard
Contents
N [1o o 18 o 1o o PR 11
R U 10 1] PPN 11
1.2 GenTL SUDCOMMILIER........cci ittt re e r e e e e e e e e e 11
1.3 Acronyms and DefinitioNS.........ccccuuiuiiiiiiiiieeeiiiiiiiie e 11
I 0 Ao 0] 0)Y/ 0 1T SO 11
R I D 1= 11 0110 USSP 12
14 RETEIBNCES ...ttt e e e e e e e e e e e e s s nnne e e e e 12
FZ N o o1 (=T o LU PP PPPPRRRN 13
2.1 OVEIVIBW....uiiiiiiiiiiiiieteeee et e e eeett ettt ettt et e e e e e e e e e s st e e e e e e e e e e e e e e e e e s s asnsmnne e e e s s e eannnns 13
2.1.1 GenlCam GENTL ..o er e 13
2.1.2 GeNICaAmM GENADI.....ccce ittt e e e e e aeaeaan 13
2.1.3 GenlCam GenTL SENCo e 14
2.2 GENTL MOAUIES.....cci i eeee et eenes et e e e e e e e e e e e e e eemeees 14
2.2.1 SYSEM MOAUIE.... ..ttt 15
2.2.2 INterface MOGUIE..........cciiiiiiiiiiiie e ieee 15
2.2.3 DeVICE MOUUIE.......ccoiieeeee e errea s e e e e e e e e e e e e eeaneeas 16
2.2.4 Data Stream MOAUI...........ooooeiiiiiiii e 16
2.2.5 BUfEr MOAUIE........coeeeeeiee e e e e e e e e e eaenee s 16
2.3 GenTL Module COMMON PALS..........uuuuiiiiiiiiiiiieeeiiiiiieeieeeeeeeeee e e e e e eeeeeeeeeeaeeas 16
P2 Tt R O [1 (=T o = (o =T 17
2.3.2 CONFIQUIALION. .. .uuuiiiii e e e mmme e e e e emmrees 18
2.3.3 SIgnaling (BEVENTS)....ccooiiiiiiiiiiiiie e 18
3 Module Enumeratin and INStantiation................oevviiiiiiimmmneiieeeeeieiiiiii s smmeeeeeees 19
T T (U] o PRSP PRRRPPPPPPPPRPPPPPPPPPN 19
T V1 (=7 1 o TS 20
R T 1 01T = Lo =R 21
I B 1Y o = ST 23
TR T B - 1= B 1 (== o o BSOS RUPPPPRT 24
BiB BU BT e s 24
3.7 Enumerated modules [ISt OVEIVIEM.............uuuuviiiiirieeeiiiiiiiirieieeeee e 25

12 December 2013 Page2 of 142

GEN<i>CAM i

Version 14

GenTL Standard

3.8 EXAMPIE.. . e aaaas 26
3.8.1 DBASIC DEVICE ACESS.....cuuuuuuuiiiiiiieieeeeetieeeiaaas e e e e e e e e e e e eeeeeeeeainnneaeeaeeeeeeeeeeesnnnnns 26
3.8.2 INIELID coeeee e a e e 27
3.8.3 OPBNT Lo 27
3.8.4 OpenFirstINterfaCe.......ccooeeiii e e 27
3.8.5 OPENFIISIDEVICE.cceiiiiiiiii i eeee e ee i e e e e e e e e e e enn 27
3.8.6 OpenFirstDataSIrEaM.........uuuueiiiiiie e e e eeer e e e e e e e e e e aeeeaaeans 28
GRS T A O [0 15T B = 1= 1] (Y- 1o SR 28
3.8.8 ClOSEDRVICE.cci e e ettt e e e bbbt e s annre e 28
3.8.9 ClOSEINEITACE. ... uuiiei et s 29
3.8.10 ClOSET L uuiiiiiieiiiiiiiie e e e e eee et e ettt e e e e s smmae st e e e e e e b e e e e e enmmn e e e ans 29
3.8.11 ClOSELID....uueeiiiee e 29

4 Configuration and SigNaling..........cccceveeeeeeiiiiieeeice e eeeeeeeeeeeee e, 30

4.1 CONTIGUIALION......uititiiiiiiiieie ettt e e e e e e e e e e e e e e e n e e 30
I I |V o o (1] [P TP P PP TPPPPRP 30
4.1.2 XML DESCHPION. ...ttt ettt e e e e e e e e e e e e st e e e e e e e e e e e e e e e e e 31
4.1.3 EXAMPIO.. .ot ere e e ————— e aaaaaas 33

4.2 SIGNAIING . cceiiiiieeee et eeer e e e e e e e eas 34
4.2.1 EVENE ODJECES. .. it i eeee e eraes 34
42.2 EveNt Data QUEUER........cooiiiiii et eeme et eeene et e e e e e e 37
4.2.3 EVEeNt HANAINGoooiiiiiiiie e e e e e e e e e e aeeeas 37
4.2 4 EXAMPIE....uuiiiiiiiiiiiiiiiii e 40

4.3 Data Payload DEelIVEIY........ccoooiiiiiieeeeee e 40

5 ACQUISITION ENQING...cciiiiiiiiiiiii e e e e e e anernnnees 42

5.1 OVEIVIBW...eetiiiiiiiiee et oot a e e e e e e e e e e e et e et eetneeaeeeeeeeeeeeeeesessstbs s mmmeeeeeeesnnnne 42
5.1.1 Announced BUffer POQL............iiiiiiiii e eeeteeen e 42
5.1.2 InpuUt BUFEr POOL....... e eeee e 42
5.1.3 Output BUfEr QUEBUE. ..ottt ieee et eeer e e e e e e e e e aaeeeas 42

A ot o [1 1110 o IO 1 = 1 S 43
5.2.1 AllOCAE MEMOIY.. ..ottt ieeeiiii bbb e e e e e e e e s eeee e e et e e e e e e e aaeaeeaeaasaane 44
5.2.2 ANNOUNCE BUFfEIS....uuiiiiiii et D
5.2.3 QUEUE BUFTEIS ..ottt eeeee e e 46

12 December 2013 Page3 of 142

GEN<i>CAM i

Version 14

GenTL Standard

5.2.4 Register New BUffer EVENL...........ccooiiiiiiiiiiieee e 46
5.2.5 Start ACQUISTEION.coiiiiiiiii i eeee e eeenass e e e e e e e e e e e e e e enn 46
5.2.6 Acquire Image Data...........cccooiiiiiiiiiiiieee e 46
5.2.7 StOP ACQUISITION.ciiiiiiiiiiiii it eeee et eeeea et e e e e e e e e e e e e enn 47
5.2.8 FlushBuffer Pools and QUEUES............cceeeeeieeviimmmreiiieeeeeeevieee e eevvnnmeennnn A7
5.2.9 ReVOKE BUBIS ..o e aneeas 47
5.2.10 FrEE MEIMOIY....ccuuuiiiiiii e e ettt e e e et eenne e et e e e et e e e ean e e eesmnas 48
5.3 Buffer Handling MOGES...........uuiiiiiiiiiiiii e 48
5.3.1 Default MOuuiiiiiiiiiiiiiiiieeeiiiii e e e e e e e e e ammne e s 48
5.4 Chunk Data HandliNg...........uuuuiiiiiiiiiiiieeeiieieeeeeee e 49
5.4, 1 OVEIVIBW.....uuiiiiiiiiiiiiiiieieeeeeesetttteeetetaeeeaaeaeaeaaessmsmtaaaaaeeaaaaaasssssssnnnrnnnesesssaans 49
5.4.2 EXAMPIC..oiiiiiiiiiiiee e 50

6 SOftWAre INtEITACE. .. .ueiiiiiiiiiiii e 52
6.1 OVEIVIEW...ceeeiiiiiiiiieee e e e e e e e e eeeee s s e e e e e e e e e e e e e eeeeeetnnaaaeeeeeeeeeeeeessssssssnnmmmeeeeeesssnnnns 52
6.1.1 INSEAllAtION.....coei it eree e e e e 52
6.1.2 Function Naming CONVENTIQN.........ccuiiiiiiiiiiiiiee e eenee e 52
6.1.3 Memory and Object Management..............uuuuuuuiiiccnreeeeeeiiiriee e eeeenns 53
6.1.4 Thread and MUltiproCess Safely..........ccoouuiiiiiiiiiccciee e 53
6.1.5 Error Handling............ouuuuiiiiiii e enea s 54
6.1.6 Software Interface VerSiOnS........ccoooeeeeeeiiiiiiieees e eeeeeeeeemme e eeeeeeees 56
6.2 USEd DAta TYPES.....oeiieeieiiiiiiiei s et e e e e e e e eenn e e e e e e e e e e e e e e e e e e e aenn s 57
6.3 FUNCHLON DECIAratioNS........cccviieeeeiiieiiccce e eee e e e e e e e e e 58
6.3.1 Library FUNCLIONS...........oooiiiiieeme et e e e e e e e 58
6.3.2 SYSIEM FUNCHONS.eiiiiiiiiiiiiiiee e 61
6.3.3 Interface FUNCLIONS...........uuuiiiiiiee e eeeeeeeieeee e eeeeeeeeeneeend 63
6.3.4 DeViCe FUNCLONS.........ccevviiiiiiiiiiiimmreeeieiinnns e e s e e e e e e seemsnnnnnsseseeeeenseeseeseene d D
6.3.5 Data Stream FUNCLONS..........ooiiiiiiiiiiiiiieeee e 81
6.3.6 POI FUNCHONS......ceiiiiiiiieiiie st e e e e eern s e e e e e e e e e e e e e e e eeeannne s 92
6.3.7 SIgNaling FUNCLIONS........coiiiiiie et 101
I U] 0= = 1o o 1P 107
6.4.1 Library and System EnNUMErations..............ccoeveeevivimmmeeiiiiie e e eveeea 107
6.4.2 Interface ENUMEIAtIONS.........uuuiiiiiiiiiiiii e 110

12 December 2013 Paged of 142

GEN<i>CAM _),;é‘t
Version 14 GenTL Standard

6.43 DeVviCe ENUMETALIONS........uuuiiiiiiiiiiiieie ettt rmmme e 111
6.4.4 Data Stream ENUMErations...........covuuuuuuumiiicreeeeiiiiiiiiinns e eeeennnns 114
6.4.5 POrt ENUMEIAtIONS.......cooiiiiiiiiiii e 128
6.4.6 Signaling ENUMEratioNS...........ccooiiiiiiiiiiiime e e 131

B.5 SITUCTUIES .. .o ereea e e e e e e e e e e n e s emen e e e eenne 135
6.5.1 SigNaling StrUCIUIES.......ccoiiiiiiii e e 135
6.5.2 POI STIUCIUIES.......oiiiiiiie e r e e e e e eeees 135
6.5.3 Generic Chunk Parser StrUCIUIES.uuuuiieiiiiieeeiiiiiiieeeeeeee e e e e e s 136

6.6 SHNG CONSANLS.....ouiiiiiiiiiii e ereerc e e e et erer e e e e e e e e e e e e e e eeeeaaeaennnns 136
6.6.1 TranSPOIt LAYl TYPES......coiiiieeeeeeeiiiieiiieees e e et ee e nmme e e e e eeennnnnnes 136

6.7 NUMEIC CONSIANLS.....ciiiiiiiiiiiiiiiiiieieeeri it e et e e e e e e e s semr e e e e e e e e e e e e e e e e s s e nannne 137

7 Standard Feature Naming Convention for GenTL.........cccccooveiiiiicceciiiiiee e, 138
% R o] 1 41 1 [0 o RSP RPPPPPPT 138
7.1.1 SYStemM MOAUIE.......eiiiiiiiiiiiie ettt e e e e e nes 138
7.1.2 Interface MOGUIE.........cccoiiiiiiiiiiiiiieee s e e e e e e e e e e e e eas 139
7.1.3 DeVICE MOUUIE.......ccoiiieeeeeee e e e e e e e e e e e e e enan 141
7.1.4 Data Stream ModUIE............ooooiiiiiiiiiiee e 141
7.1.5 BUfEr MOAUIE........coeeeiiiiiiee e eeeee e e e e e e e e nees 142

12 December 2013 Pageb of 142

GEN<i>CAM 7
Version 14 GenTL Standard
Figures
Figure2-1: GenTL Consumer and GenTL ProdUCET.............coiiiiiiiiieemiiiiieeeeeeeeee e 13
Figure2-2: GenTL Module NIErarChy.............uuueiiiiiiiiceeeicie e eeeer e 15
Figure2-3: GenlCam GenTL interface (C and GenApi Featoterface).................c........ 17
Figure3-4: Enumeration hierarchy of a GenTL Producer............ccceuvvvvvimmmeeeeeveeeennnnnnns 19

Figure 55: Acquisition chain seen fromailf f er 6 s perspective (def au
.. 44

Figure56 : Def aul t acquisition from.the.GdnTL Co

12 December 2013 Page6 of 142

GEN<i>CAM i

Version 14 GenTL Standard

Tables

Table4-1: Local URL definition for XMLdescription files in the module register map..32

Table4-2: Event types per MOAUIE............ooeiviiiiiiiece e 35
Table6-3: Function Naming CONVENTION.ciiiiiiiieiiii it eeee e 52
Table6-4: C interface error COURS.....uuuuiiiiiiiiiii ettt 54
Table7-5: System module information fEatUIeS.ovvvviiiiiiiieee e 138
Table7-6: Interface enumeration fEAtULES...........covveeiiiiiiiiccce e 139
Table7-7: Interface information fEAtUreS.cccovveii i 140
Table7-8: Device enumeration fEAtUIES.ccuvviiiie i 140
Table7-9: Device information fEatUreS...........oevvuuiieiiiiireeeeeeerr e 141
Table7-10: Stream enumeration fEALUIES.uuuuuiiiiiiiiieeeiiiiiiiiiiceee e 141
Table7-11: Data Stream informi@n fEatUreS...........uuueeiiiiiiei e eeee 141
Table7-12: Buffer information featuresS.........ccccvvveiiiiiiiiccc e 142

12 December 2013 Page7 of 142

GEN<I>CAM

3

Version 14

GenTL Standard

Changes

Version| Date Author Description
0.1 May 1* 2007 Rupert Stelz, STEMMER | 1* Version
IMAGING
0.2 July 18" 2007 Rupert Stet, STEMMER Added Enums
IMAGING Added Std Features
Added AcqMode Drawings
0.3 November 2007 | GenTL Sulcommittee: Applied changes as discussed on the last meet
Rupert Stelz, STEMMER | in Ottawa
IMAGING
Sascha Dorenbeck,
STEMMER IMAGING
Jan Becvar, Leutron Vision
Carsten Bienek, IDS
Francois Gobeil, Pleora
Technologes
Christoph Zierl, MVTec
0.4 Januar 2008 GenTL Subcommittee Removed EventGetDataEx and CustomEvent
functionality
Added comments from IDS, Matrix Vision,
Matrox, Pleora, Leutron Vision, STEMMER
IMAGING
1.0 August 2008 Standard Document Releas
1.1 September 2009| GenTL Subcommittee Changes for V. 1.1:
1 Support of multiple XMLfiles (Manifest)
1 Added stacked register access
1 Changes for using the new erhiass scheme
1 Changes to the installationqoedure / location
1 Added new error codes
9 Definition of the symbol exports under 64Bit
oS
1 Clarifications to the text
1.2 April 2010 GenTL Subcommittee Changes for V. 1.2
1 Various clarifications, in particular event
objects, feature change handling, everitdyu
handling
9 Extension to th8UFFER_INFO_CMD
9 New error codé&sC_ERR_NOT_ AVAILABLE
1 Added data payload delivery chapter
1 Added payload datatype
1.3 August 2011 GenTL Subcommittee Changes for V. 1.3
T Renamed AAcqui sition
Handling Modebo
9 Various clarifications, in particular buffer

12 December 2013

Pages of 142

GEN<I>CAM

5

Version 14

GenTL Standard

=a =4 -4 -4

il

alignment, error codes, thread safety,
multiprocess access, default buffer handling
mode

Added Chunk Data handling in text and
function inteface

Adjusted Data Stream features to SFNC
Added ASoftware I nte
Added ptrdiff_t type

New error code
GC_ERR _INVALID ADDRESS

Deprecation of
StreamAcquitisionModeSelector, introducing
StreamBufferHankkhgMode instead.

Clarified buffer alignment

14

March2013

GenTL Subcommittee

Changes for V. 4.

il

= =

=A =4 =4 -4 -8 -4

=a =4 -4 -4

New PAYLOADTYPE_IDsincluding the ones
necessary to reflect GEV2.0 types. Adjust
ChunkPayloadtypes.

Typos
Clarifications

Remove technology specific nanfesm
chapter 7and refer to GenTL SFNC

Renamd of TLTYPE USB3 to U3V

Added functions to retrieve the parent modul
Added Device info commands

Added Port info command

Added Pixel Endiamess

Addednumericconstantdor infinite timeouts
and invalid handles.

Added clarification that Schema Version as p
of the URL is only to be used with legacy
GCGetPortURL function

AddedBUFFER_INFO_DATA_SIZEand
explanation.

Added ZIP clarification

AddedBUFFER_INFO_TIMESTAMP_N&nd
DEVICE_INFO_TIMESTAMP_FREQUENCY|

Changed O6revisiond t

Clarification of
STREAM_INFO_NUM DELIVERED

Added reference to SFNC Transfer Control
features.

Clarification on Module enumeration issues
Added reference to GenTL SFNC
Added PFNC to PixelFormatNamespaces

Extendedreturn code information foBenTL
functions

12 December 2013 Paged of 142

GEN<I>CAM

5

Version 14

GenTL Standard

=

=a

Added UTF8 encoding
Added return code desptions

Rename oEVENT_FEATURE_DEVEVENG
EVENT_REMOTE_DEVICE

AddedEVENT_MODULE
AddedGC_ERR_INVALID_VALUE

Deprecatd

PAYLOAD TYPE EXTENDED CHU&
changed comment on

PAYLOAD TYPE CHUNK_ DATA

AddedGC_ERR_RESOURCE_EXHAUSTEN
andGC_ERR_OUT _OF MEMORY

Added error codes to function descriptions.

Clarify number of images to acquire in
DSStartAcquisition

Added clarification tdeventKill function
Clarified handling of too small buffers
Clarified the retrieval of the payload size fron
the GenTL Producer

Clearified the behavior of

EventKill /EventGetData

12 December 2013 PagelOof 142

GEN<I>CAM 4§

Version 14 GenTL Standard

1 Introduction

1.1 Purpose

The gal of the GenlCam GenTL standard is to provide a generic way to enumerate devices
known to a system, communicate with one or more devices and, if possible, stream data from
the device to the host independent from the underlying transport technologylldwis @

third party software to use different technologies to control cameras and to acquire data in a
transport layer agnostic way.

The core of the GenlCam GenTL standard is the definition of a generic Transport Layer
Interface (TLI). This software intiace between the transport technology and a third party
software is defined by a C interface together with a defined behavior and a set of standardized
feature names and their meaning. To access these features the GenlCam GenApi module is
used.

The GenlCamGenApi module defines an XML description file format to describe how to
access and control device features. The Standard Feature Naming Convention defines the
behavior of these features.

The GenTL software interface does not cover any despeeific furctionality of the remote
device except the one to establish communication. The GenTL provides a port to allow access
to the remote device features via the GenApi module.

This makes the GenTL the generic software interface to communicate with devices and
stream data from them. The combination of GenApi and GenTL provides a complete software
architecture to access devices, for example cameras.

1.2 GenTL Subcommittee

The GenTLSubcommittee is part of the GenlCam Group hosted by the EMVA.

1.3 Acronyms and Definitions

1.3.1 Acronyms

Term Description
CL Camera Link
CTI Common Transport Interface
GenApi GenlCam Module
GenlCam Generic Interface to Cameras
GenTL Generic Transport Layer
GenTL SFNC GenlCam Module: GenTL Standard Feature Naming
Convention

12 December 2013 Pagellof 142

GEN<i>CAM i

Version 14 GenTL Standard
Term Description

GigE Gigabit Ehernet

[IDC 1394 Trade Association Instrumentation and Industrial
Control Working Group, Digital Camera Sub Working
Group.

PC Personal Computer

SENC GenlCam Module: Standard Feature Naming Conventi

TLI Generic Transport Layer Interface

USB UniversalSerial Bus

uvC USB Video Class

1.3.2 Definitions

Term

Description

Configuration

Configuration of a module through the GenTL Port
functions, a GenApi compliant XML description and the
GenTL Standard Feature Naming Convention.

GenApi GenlCam module definintpe XML Schemawhich is useq
to describe register maps.
GenTL Generic Transport Layer Interface

GenTL Consumer

A library or application using an implementation of a
Transport Layer Interface

GenTL Producer

Transport Layer Interface implementation

Signaling Mechanism to notify the calling GenTL Consumer of ar
asynchronous event.
TLParamsLocked XML -Feature in the XML of the remote device to preve

the change of certain features during an acquisition.

1.4 References
AlA GigE Vision Standard

http://www.machinevisiononline.org/

EMVA GenlCam Standard www.genicam.org
ISO C StandardSO/IEC 9899:1990(E))

RFC 3986
RFC 1951

Uniform Resource Identifier
DEFLATE Comprased Data Format Specification v1.3

12 December 2013 Pagel2of 142

http://www.machinevisiononline.org/
http://www.genicam.org/

GEN<i>CAM 7

Version 14 GenTL Standard

2 Architecture

This section provides a high level view of the different components of the GenlCam GenTL
standard.

2.1 Overview

The goal of GenTL is to provide an agnostic transport layer interface to acquire images or
otherdata and to communicate with a device. It is not its purpose to configure the device
except for the transport related featuiegven if it must be indirectly used in order to
communicate configuration information to and from the device.

2.1.1 GenlCam GenTL

Thest andard textdés primary concern is the def
However, it is also important to understand the role of the GenTL in the whole GenlCam
system.

GenTL Consumer
Customer high-level machine vision application

LIl

Figure2-1: GenTL Consumer and GenTLd®@ucer

When used alone, GenTL is used to identify two different entities: the GenTL Producer and
the GenTL Consumer.

A GenTL Producer is a software driver implementing the GenTL Interface to enable an
application or a software library to access and gomé hardware in a generic way and to
stream image data from a device.

A GenTL Consumer is any software which can use one or multiple GenTL Producers via the
defined GenTL Interface. This can be for example an application or a software library.

2.1.2 GenlCam GenApi

It is strongly recommended not to use the GenApi module inside the GenTL Producer
implementations. If it is used internally no access to it may be given through the C interface.
Some reasons are:

12 December 2013 Pagel3of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

1 Retrieval of the correct GenlCam XML file: for the deuvte configuration XML there is
no unique way a GenTL Producer can create a node map that will be always identical to
the one used by the application. Even if in most cases the XML is retrieved from the
device, it cannot be assumed that it will always betse.

1 GenlCam XML description implementation: there is no standardized implementation.
GenApi is only a reference implementation, not a mandatory standard. User
implementations in the same or in a different language may be used to interpret GenApi
XML fi les. Even if the same implementation is used, the GenTL Producer and Consumer
may not even use the same version of the implementation.

1 Caching: when using another instance of an XML description inside the GenTL Producer,
unwanted cache behavior may ocbacause both instances will be maintaining their own
local, disconnected caches.

2.1.3 GenlCam GenTL SFNC

In order toallow configuration of a GenTL Producer each module implements a virtual
register map and provides a GenApi compliant XML fdee chapte2.3.2. Only mandatory
features of these XML files are described in this document in chaptédl Features
(mandatory and non mandatogre defined in the GenTL SFNC document.

2.2 GenTL Modules

The GenTL standard defines a layersucture for libraries implementing the GenTL
Interface. Each layer is defined in a module. The modules are presented in a tree structure
with the System module as its root.

12 December 2013 Pagel4 of 142

GEN<I>CAM

A
T?Ajt

Version 14 GenTL Standard

4. Buffer Module

=h T2 &2
—] = =
3. Stream Module (“_,,«w (:ww («mﬂ
Stream 0 Stream 1 Stream 2
2. Device Module :
Device 0 Device 1 Device 2
1. Interface Module a
Interface O Interface 1 Interface 2
0. System Module Z\E jt ﬁ
L[
System

Figure2-2: GenTL Module hierarchy

2.2.1 System Module

For every GenTL Consumer the System module as the root of the hierarchy is the entry point

to a GenTL Producer software driver. It represents

the whole system (not global, just the

whole system of the GenTL Producer driver) on the host side from the Gibndiies point

of view.

The main task of the System module is to enumerate and instantiate available interfaces

covered by the implementation.

The System modul e al so
internal functionalityto the GenTL Consumer.

provides signaling

It is possible to have a single GenTL Producer incorporating multiple transport layer
technologies and to express them as different Interface modules. In this case the transport

| ayer technol ogy of t he

8 the ohileh Interfack unodalesmu s t

expose their actual transport layer technology. In this case the first interface could then be a
Camera Link frame grabber board and the second interface an [IDC 1394 controller.

2.2.2 Interface Module

An Interface module repressnone physical interface in the system. For Ethernet based
transport layer technologies this would be a Network Interface Card (NIC); for a Camera Link
based implementation this would be one frame grabber board. The enumeration and
instantiation of availale devices on this interface is the main role of this module. The

12 December 2013

Pagel5of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

Interface module also presents Signaling and module configuration capabilities to the GenTL
Consumer.

One system may contain zero, one or multiple interfaces. An interface is always onky of
transport layer technology. It is not allowed to have e.g. a GigE Vision camera and a Camera
Link camera on one interface. There is no logical limitation on the number of interfaces
addressed by the system. This is limited solely by the hardware used.

2.2.3 Device Module

The Device module represents the GenTL Prod:i
The responsibility of the Device module is to enable the communication with the remote
device and to enumerate and instantiate Data Stream modules. eéliee Dnodule also

presents Signaling and module configuration capabilities to the GenTL Consumer.

One Interface module can contain zero, one or multiple Device module instances. A device is
always of one transport layer technology. There is no logicataliimn on the number of
devices attached to an interface. This is limited solely by the hardware used.

2.2.4 Data Stream Module

A single (image) data stream from a remote device is represented by the Data Stream module.
The purpose of this module is to provithe acquisition engine and to maintain the internal
buffer pool. Beside that the Data Stream module also presents Signaling and module
configuration capabilities to the GenTL Consumer.

One device can contain zero, one or multiple data streams. Therdogia®d limitation on
the number of streams a device can have. This is limited solely by the hardware used and the
implementation.

2.2.5 Buffer Module

The Buffer module encapsulates a single memory buffer. Its purpose is to act as the target for
acquisition. Thanemory of a buffer can be user allocated or GenTL Producer allocated. The
latter could be prallocated system memory. The Buffer module also presents Signaling and
module configuration capabilities to the GenTL Consumer.

To enable streaming of data at$é¢ one buffer has to be announced to the Data Stream
module instance and placed into the input buffer pool.

The GenTL Producer may implement preprocessing of the image data which changes image
format or buffer size. Please refer to chagt&ifor a detailed list of the parameters describing
the buffer.

2.3 GenTL Module Common Parts

Access and compatibility between GenTL Consumers and GenTL Producers is ensured by the
C interface and the description of the behavior of the modutes, Signaling, the
Configuration and the acquisition engine.

12 December 2013 Pagel6 of 142

GEN<i>CAM =3
Version 14 GenTL Standard

Figure2-3: GenlCam GenTL interface (C and GenApi Feaiaterface)

The GenTL Producer driver consists of three logical parts: the C interface, the Cordigurati
interface and the Event interface (signaling). The interfaces are detailed as follows:

2.3.1 C Interface

The C interface provides the entry point of the GenTL Producer. It enumerates and creates all
module instances. It includes the acquisition handled byDia Stream module. The
Signaling and Configuration interfaces of the module are also accessed by GenTL Consumer
through the C interface. Thus it is possible to stream an image by just using the C interface
independent of the underlying technology. THsbaneans that the default state of a GenTL
Provider should ensure the ability to open a device and receive data from it.

A C interface was chosen because of multiple reasons:

9 Support of multiple client languages:a C interface library can be imported fiaany
programming languages. Basic types can be marshaled easily between the languages and
modules (different heaps, implementation details).

1 Dynamic loading of libraries: it is easily possible to dynamically load and call C style
functions. This enabldbe implementation of a GenTL Consumer dynamically loading
one or more GenTL Producers at runtime.

1 Upgradeability: a C library can be designed in a way that it is binary compatible to
earlier versions. Thus the GenTL Consumer does not need to be recafgpitedsion
change occurs.

12 December 2013 Pagel7 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

Although a C interface was chosen because of the reasons mentioned above, the actual GenTL
Producer implementation can be done in an ofmaented language. Except for the global
functions, all interface functions work onrfthes which can be mapped to objects.

Any programming language which can export a library with a C interface can be used to
implement a GenTL Producer.

To guarantee interchangeability of GenTL Producers and GenTL Consumers no language
specific feature eoept the ones compatible to ANSI C may be used in the interface of the
GenTL Producer.

2.3.2 Configuration

Each module provides GenTL Port functionality so that the GenlCam GenApi (or any other
similar, nonreference implementations) can be used to accessamaedé s conf i gur at
basic operations on a GenTL Producer implementation can be done with the C interface
without using specific module configuration. More complex or implementatieacific

access can be done via the flexible GenApi Feature intedaoey the GenTL Port
functionality and the provided GenApi XML description.

Each module brings this XML description al on
read and/or modify settings in the module. To do that each module has its own viltal reg

map which can be accessed by the Port functions. Thus the generic way of accessing the
configuration of a remote device has been extended to the transport layer modules themselves.

2.3.3 Signaling (Events)

Each module provides the possibility to notifg t&enTL Consumer of certain events. As an
example, a New Buffer event can be raised/signaled if new image data has arrived from a
remote device. The number of events supported for a specific module depends on the module
and its implementation.

The C inteface enables the GenTL Consumer to register events on a module. The event
object used is platform and implementation dependent, but is encapsulated in the C interface.

12 December 2013 Pagel8of 142

GEN<i>CAM i

Version 14 GenTL Standard

3 Module Enumeration and Instantiation

The behavior described below is seen from a singlpr ocess® point of

Producer implementation must make sure that every process that is allowed to access the
resources has this separated view on the hardware without the need to know that other
processes are involved.

For a detailed descriph of the C functions and data types see chaptoftware Interface
page52ff. For how to configure a certain module or get notified on events see cHapter
Configuration and Signalingage30.

System

Interface

=
g_:{)

Data Stream

Figure3-4: Enumeration hierarchy of a GenTL Producer

3.1 Setup

Before the System module can be opened and anytmpecan be performed on the GenTL
Producer driver thesClinitLib ~ function must be called. This must be done once per
process. After the System module has been closed (when e.g. the GenTL Consumer is closed)
the GCCloseLib function must be called to properly free all resources. If the library is used
afterGCCloseLib was called th&ClnitLib must be called again.

There is noreference counting within a single procefss GClnitLib . Thus even when
GClnitLib is called twicefrom within a single process spasg@hout accompanying call to
GCCloseLib , the second call will return an err@lC_ERR_RESOURCE_IN_USHEhe first
call to GCCloseLib from within that process will free all resourcdhe same is true for
multiple cals toGCCloselLib without an accompanying call @CinitLib .

12 December 2013 Pagel9of 142

V

GEN<I>CAM Fie

Version 14 GenTL Standard

3.2 System

The System module is always the entry point for the calling GenTL Consumer to the GenTL
Producer. With the functions presdmdre all available hardware interfaces in the form of an
Interface module can be enumerated.

By calling theTLOpen function theTL HANDLEt o0 wor k on t he System m
can be retrieved. ThEL_HANDLEobtained froma successful call to thELOpen function
will be needed for all successive calls to other functions belonging to the System.module

Before doing that, th&CGetIinfo function might be called to tgeve the basic information
about the GenTL Producer implementation without opening the system module.

Each GenTL Producer driver exposes only a single System instance in an operating system
process space. If a GenTL Producer allows access from multgidegses it has to take care

of the interprocesscommunication and must handle the bd@eping of instantiated system
modules. If it does not allow this kind of access it must return an appropriate error code
whenever an attempt to create a second Systemule instance from another operating
system process is made.

The System module does no reference counting within a single process. Thus even when a
System module handle is requested twice from within a single process space, the second call
will return an errorGC_ERR_RESOURCE _IN USEhe first call to the close function from

within that process will free all resources and shut down the module.

Prior to the enumeration of the child interfacesThé/pdatelnterfaceL.ist function must

be called.The list of interfaces held by the System module must not change its content unless
this function is called again. Any call tdLUpdatelnterface List does not affect
instantiated interface handles. It may only change the order of the internal list accessed via
TLGetlInterfacelD . The instantiation of a child interface with a known id is possible
without a prewous enumerationlt is recommended to callLUpdatelnterfaceList

after reconfiguration of the System module to reflect possible changes

The GenTL Consumer must make sure that calls toTihdpdatelnterfaceList

function and the functions accessing the list are not made concurrent from multiple threads
and that all threads are aware of the update operation, when performed. The GenTL Producer
must make sure that any listass is done in a thread safe way.

After the list of available interfaces has been generated internally the
TLGetNuminterfaces function retrieves the number of present interfaces known to this
system. The list coains not thdF _HANDLEs itself but their unique IDs of the individual
interfaces. To retrieve such an ID theGetinterfacelD function must be called. This
level of indirection allows the enumeration of several iais#t without the need to open
them which can save resources and time.

If additional information is needed to be able to decide which interface is to be opened, the
TLGetlInterfacelnfo function can be called. This fation enables the GenTL
Consumer to query information on a single interface without opening it.

To open a specific interface the unique ID of that interface is passed to the
TLOpeninterface function. If an ID is knowrprior to the call this ID can be used to

12 December 2013 Page20of 142

GEN<i>CAM i

Version 14 GenTL Standard

directly open an interface without inquiring the list of available interfaces via

TLUpdatelnterfaceList . That implies that the IDs must stay the sambdtween two

sessbns. This is only guaranteed when the hardware does not change in any way. The
TLUpdatelnterfaceList function may be called nevertheless for the creation of the
Syst emos internal i st enTL FRrodwcer| mayl @ll i nt e
TLUpdatelnterfaceList at module instantiation if needed.
TLUpdatelnterfaceList must be called by the GenTL Consumer before any call to
TLGetNuminterfaces or TLGetlnterfacelD . After successful module instantiation

the TLUpdatelnterfacelList function may be called by the GenTL @&umer so that it

is aware of any change in that list. For convenience reasons the GenTL Producer
implementation may allow opening an Interface module not only using its unique ID but also
with any other defined name. If the GenTL Consumer then requeslb & such a module,

the GenTL Producer must return its unique ID and not the conveniamee used to request

the modul eds handle initially. This all ows
address of a network interface (in case of a GigE VisBenTL Producer driver) to
instantiate the module instead of using the unique ID.

When the GenTL Producer driver is not needed anymord ltlidose function must be
called to close the System module and all other modules wiecttith open and relate to this
System.

After a System module has been closed it may be opened again and the handle to the module
may be different from the first instantiation.

3.3 Interface

An Interface module represents a specific hardware interfaca liawork interface card or

a frame grabber. The exact definition of the meaning of an interface is left to the GenTL
Producer implementation. After retrieving tthe HANDLE from the System module all
attached devices can be enumerated.

The size and ordesf the interface list provided by the System module can change during
runtime only as a result of a call to théUpdatelnterfaceList function. Interface
modules may be closed in a random order that can diféen the order they have been
instantiated in. The module does no reference counting. If an Interface module handle is
requested a second time from within one process space the second call will return an error
GC ERR RESUORCE _IN USE A single call from within that process to theClose

function will free all resources and shut down the module in that process.

Every interface is identified not by an index but by a System module wide unique ID. The
content of this ID is upo the GenTL Producer and is only interpreted by it and must not be
interpreted by the GenTL Consumer.

In order to create or update the internal list of all available devices the

IFUpdateDevicel.ist function may becalled. The internal list of devices must not
change its content unless this function is called ag#inis recommended to call
IFUpdateDevicel.ist regularly from time to time and after reconfiguration of the

Interface module to reflect possible changes.

12 December 2013 Page21 of 142

GEN<i>CAM i

Version 14 GenTL Standard

The GenTL Consumer must make sure that calls tdRb@dateDeviceList function

and the functions accessing the list are not made concurrent from multiple threads and that all
threads are aware of an update operation. The GenTL Producer must make sure that any list
access is done in a thread safe vigause the access to the lists could be made from
multiple threads and the storage for these lists is not thread local. Thaunpftating the list

from one thread can affect the index used in another thread.

The number of entries in the internally generated device list can be obtained by calling the
IFGetNumDevices function. Like the interfacést of the System module, this list does not
hold theDEV_HANDLE of the devices but their unique IDs. To retrieve an ID from the list
call the IFGetDevicelD function. By not requiring a device to be opened to be
enumeated, it is possible to use different devices in different processes. This is of course only
the case if the GenTL Producer supports the access from different processes.

Before opening a Device module more information about it might be necessary.i@&weeretr
that information call thé~GetDevicelnfo function.

To open a Device module theOpenDevice function is used. As with the interface ID the
device ID can be used, if known prito the call, to open a device directly by calling

IFOpenDevice . The ID must not change between two sessions. The
IFUpdateDeviceList function may be called nevertheless for theatiom of the
Interface internal list of available devicdBUpdateDeviceList must be called before

any call tolFGetNumDevices or IFGetDevice ID. In case the instantiation of a Device
module is possible without having an internal device listii@@penDevice may be called
without callinglFUpdateDeviceList before. Thigs necessary if in a system the devices
cannot be enumerated, e.g. a GigE Vision system with a camera connected through a WAN.
A GenTL Producer may calFUpdateDevicelList at module instantiation if needed.
After suwccessful module instantiation theUpdateDeviceList may only be called by

the GenTL Consumer so that it is aware of any change in that list. A call to
IFUpdateDevicelList does not affect any instantiated Device modules and its handles,
only the order of the internal list may be affected.

For convenience reasons the GenTL Producer implementation may allow to open a Device
module not only with its unique ID but with any othefided name. If the GenTL Consumer

then requests the ID on such a module, the GenTL Producer must return its unique 1D and not
the Anameodo used to request the modul eds hano
example to use the IP address of a reentevice in case of a GigE Vision GenTL Producer

driver to instantiate the Device module instead of using the unique ID.

When an interface is not needed anymore it must be closed wilhCGhese function. This
frees the reagces of this Interface and all child Device modules still open.

After an Interface module has been closed it may be opened again and the handle to the
module may be different from the first instantiation.

12 December 2013 Page22 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

3.4 Device

A Device module represents the GenTL Pwaur dri ver s view on a r
Device is able to output streaming data this module is used to enumerate the available data
streams. The number of available data streams is limited first by the remote device and second

by the GenTL Producer iplementation. Dependent on the implementation it might be
possible that only one of multiple stream channels can be acquired or even only the first one.

If a GenTL Consumer requests a Device that has been instantiated from within the same
process beforena has not been closed, the Interface reatam error. If the instance was
created in another process space thiedsenTL Producerexplicitly wants to grant access to

the Device this access should be restricted to read only. The module does no reference
counting within one process space. If a Device module handle is requested a second time from
within one process space, the second call wil return an error
GC ERR RESOURCE IN USIhe first call from within that procegs the DevClose

function will free all resources and shut down the module including all child modules in that
process.

Every device is identified not by an index but by an Interface module wide unique ID. It is
recommended tbhave a general unique identifier for a specific device. The ID of the GenTL
Device module should be different to the remote device ID. The content of this ID is up to the
GenTL Producer and is only interpreted by it and not by any GenTL Consumer.

For corvenience a GenTL Producer may allow opening a device not only by its unique ID.
The other representations may be a user defined name or a transport layer technology
dependent ID like for example an IP address febdBed devices.

To get the number of aWable data streams thBevGetNumDataStreams function is
called using th®EV_HANDLEeturned from the Interface module. As with the Interface and
the Device lists this list holds the unique IDs of the availatseams. The number of data
streams or the data stream IDs may not change darsiggle sessiorthe IDs of the data
streamsnustbe fix betweerall sessions.

To get access to the Port object associated with a Device the fubet@etPort must be
called.

A Data Stream module can be instantiated by usin@#wpenDataStream function. As

with the IDs of the modules discussed before a known ID can be used to open a data stream
direcly. The ID must not change between different sessions. To obtain a unique ID for a Data
Stream call th®evGetDataStreamID function.

In case a given GenTL Producer does not provide a data stream itetuusti O for the

numberof available sttam channels. In this case a calllevOpenDataStream and all

data steam related functions which start with a DS in the name will fail. Thiken called a

ANon Streamitnigonomplletmemtnlay covers the contr
enumeration and communication with the device.

If a device is not needed anymore call bevClose f uncti on to free the
resources and its depling child Data Streams if they are still open.

12 December 2013 Page23of 142

GEN<i>CAM i

Version 14 GenTL Standard

After a Device module has been closed it may be opened again and the handle to the module
may be different from the first instantiation.

3.5 Data Stream

The Data Stream module does not enumerate its child esddkin purpose of this module
is the acquisition which is described in detail in chaptékcquisition Enginepage 42ff.
Buffers are introduced by the calling GenTL Camer and thus it is not necessary to
enumerate them.

Every stream is identified not by an index but by a Device module wide unique ID. The
content of this ID is up to the GenTL Producer and is only interpreted by it and not by any
GenTL Consumer.

When aData Stream module is not needed anymorétB€lose function must be called to
free its resources. This automatically stops a running acquisition, flushes all buffers and
revokes them.

Access from a different process spasenot recommended. The module does no reference
counting. That means that even if a Data Stream module handle is requested a second time
from within one process space the second «call wil return an error
GC ERR RESOURCIE USE. The first call from within that process to the close function

will free all resources and shut down the module in that process.

After a Data Stream module has been closed it may be opened again and the handle to the
module may be different fromHfirst instantiation.

3.6 Buffer
A buffer acts as the destination for the data from the acquisition engine.

Every buffer is identified not by an index but by a unique handle returned from the
DSAnnounceBuffer or DSAllocAndAnnounceBuffer functions.

A buffer can be allocated either by the GenTL Consumer or by the GenTL Producer. Buffers
allocated by the GenTL Consumer are made known to the Data Stream module by a call to
DSAnnounceBuffer which returns 8UFFER_HANDLEor this buffer. Buffers allocated

by the GenTL Producer are retrieved by a calD@&AllocAndAnnounceBuffer which

also returns 8UFFER_HADLE The two methods must not be mixed on a single Data
Stream module. A GenTL Producer must implement both methods even if one of them is of
lesser performance. The simplest implementation D&AllocAndAnnounceBuf fer

would be amalloc from the platform SDK.

If the same buffer is announced twize a single streamia a call toDSAnnounceBuffer

an errorGC_ERR _RESOURCE IN U$freturnedA buffer may be announced to multiple
streams. In this case individual handles for each stream will be retumrgegheral there is no
synchronization or locking mechanism between two streams definégénAL Roducer may
though provide special functiongl to prevent data losdn case aGenTL Roducer is not

12 December 2013 Page24 of 142

GEN<i>CAM i

Version 14 GenTL Standard

able to handle buffers announced to multiple streams it may refuse the announcement and
returnGC_ERR_RESOURCE_IN_USE

The required size of the buffer must kadrieved either from the Data Stream module the
buffer will be announced to or from the associated remote device (see ¢hagteor further
details).

To allow the acquisition engine to stream data into a buffer it has pialoed into the Input
Buffer Pool by calling th&®SQueueBuffer function with theBUFFER_HANDLIEetrieved
through announce functions.

A BUFFER_HANDLE retrieved either by DSAnnounce Buffer or
DSAllocAndAnnounceBuffer can be released through a calli8RevokeBuffer . A

buffer which is still in the Input Buffer Pool or the Output Buffer Queue of the acquisiti
engine cannot be revoked and an error is returned when tried. A memory buffer must only be
announced ond® a single stream

3.7 Enumerated modules list overview

The purpose of this chapter is to highlight possible issues relati toaintenance of #list
of GenTL modules (interfaces, devices) available in a system. It provides a summary of
principles listed in other chapters of the specification.

While the set of data stream modules implemented by a device is static and stays fixed
throughout the fetime of the GenTL local device module, the lists of interfaces within a
system and devices discovered on an interface are dynamic and might be updated on request
by the GenTL Consumer.

The explicit request to update the list might be issued through Ghenterface
(TLUpdatelnterfaceList , IFUpdateDevicelList functions) or through
corresponding commands (InterfaceUpdateList, DeviceUpdateList) of the parent module.

| t 6srtiampto to remark that there might be mul't
avail abl eo modul es, which weodl | demonstrate
interface:

1 Real devices physically connected to the interfdtea new device is annected at
runtime (or powered up), the GenTL Producer might or might not be awareTdifist
depends on wethet actively monitors the interface. But it will not be published to the
GenTL Consumer through the C interface nor the nodemap, until thein@enexplicitly
requests to update the list. Similarly, if the device gets physically disconnected (or
powered off), it will not be removed from the list published to the GenTL Consumer
(IFGetNumDevices /DeviceSelectoryntil the next list updatis executed

1 The list of devices discovered amgiven interface at the time dfelast request to update
the device listiEFUpdateDeviceList function or DeviceUpdateList commaidthe
nodemap and published to the GenTL Consumdéhnrough the C interface
(IFGetNumbDevices) and the nodemap (DeviceSelector). While the GenTL Producer
maintains just a single list and publishes it identically through bu#rfaces the two

12 December 2013 Page25 of 142

GEN<I>CAM

7

Version 14 GenTL Standard

views might still temporarily differ from the GenTL Consui@eariewpoint. If the list is
updated from the nodemap (using DeviceUpdateList commaénit),reflectedby the
nodemapdirectly through the C interface. If the list is updatednfr the C interface
(IFUpdateDevicelList function), it might not be reflectebly the nodemaplirectly
due to GenApi caching effects. Finally, both views (C interface and nodemaps) might be

used by the GenTL Consumerdependently. It might be querying information through

the C interface about one device, while the user selected (DeviceSelector) a different one

in the nodemap.

Currently opened local device modules, i.e. modules for which the GenTL Consumer

owns valid hadles (FOpenDevice). This is typically a subset of the list published

through the C interface anthe nodemap. However, the specification requires that
instantiated handles are not affected by any list update requéstsm&ans that if a
device is physically disconnected at runtime (while the consumer owns a valid handle for
it), the handle remains valid, until explicitly close®e{/Close) T even if most
operations upon that handle wouldhply fail. A request to updatine device list would,

however, remove sucla device from the list published by the parent interface.

A module handle becomes implicitly invalid whenever its parent (or grandparent...)

module is closed.Note also that the spification allows to open the device

(IFOpenDevice similarly for

the handle to the GenTL Consuniewhile the published device list remains unchahge

(possibly even empty) until next lisipdate request.

3.8 Example

This sample code shows how to instantiate the first Data Stream of the first Device connected
to the first InterfaceError checking is omitted for clarity reasons.

3.8.1 Basic Device Access
Functons used irthis section are listed in subsequent sections.

{

InitLib();

TL_HANDLE hTL = OpenTL();

IF_HANDLE hliface = OpenFirstinterface(hTL);

DEV_HANDLE hDevice = OpenFirstDevice(hiface);
DS_HANDLE hStream = OpenFirstDataStream(hDevi ce);

/I At this point we have successfully created a data stream on the first
/I device connected to the first interface. Now we could start to
Il capture data...

CloseDataStream(hStream);

12 December 2013

interfaces) di
should be unique and must not change between sessions) without calling
IFUpdateDevicelList first. In this case the GenTL Producer might need to

(re)execute the device discovery process on its own to connect to the device, providing

Page26 of 142

rect

GEN<I>CAM

Version 14 GenTL Standard

3

CloseDevice(hDevice);
Closelnterface(hiface);
CloseTL(hTL);
CloseLib();

3.8.2 InitLib
Initialize GenTL Producer
void InitLib(void)

{
GClitLib ():

3.8.3 OpenTL
Retrieve TL Handle
TL_HANDLE OpenTL(void)

{
TLOpen(hTL);

3.8.4 OpenkFirstinterface
Retrieve first Interface Handle
IF_HANDLE OpenFirstinterface(hTL)

{
TLUpdatelnterfaceList (hTL);

TLGetNuminterfaces (hTL, Numinterfaces);

i f(Numinterf aces>0)

{
/I First query the buffer size

TLGetlInterfacelD (hTL, 0, IfacelD, &bufferSize);

/I Open interface with index 0
TLOpeninterface (hTL, IfacelD, hNew Iface);
return hNewlface;

3.8.5 OpenFirstDevice
Retrieve first Device Handle
DEV_HANDLE OpenFirstDevice(hlF)

12 December 2013

Page27 of 142

GEN<i>CAM o
Version 14 GenTL Standard
{

IFUpdateDeviceList (hIF);

IFGetNumDevices (hTL, NumDe vices);

i f (NumDevices>0)

{

/I First query the buffer size
IFGetDevicelD (hIF, 0, DevicelD, &bufferSize);

/I Open interface with index 0
IFOpenDevice (hlF, De vicelD, hNewDevice);
return hNewDevice;

3.8.6 OpenFirstDataStream
Retrieve first data Stream
DS_HANDLE OpenFirstDataStream(hDev)

{

/I Retrieve the number of Data Stream

DevGetNumDataStreams (hDev, Num Streams);

i f (NumStreams>0)

{

/I Get ID of first stream using
DevGetDataStreamID (hdev, 0, StreamID, buffersize);
/I Instantiate Data Stream

DevOpenDataStream (hDev, StreamID, hNewStream);

3.8.7 CloseDataStream
Close ataStream

void CloseDataStream (hStream)

{

DSClose (hStream);

3.8.8 CloseDevice
Close Device

void CloseDevice(hDevice)

{

12 December 2013

Page28of 142

GEN<I>CAM

Version 14 GenTL Standard

3

DevClose (hDevice);

}

3.8.9 Closelnterface
Close Interface

void Closelnterface(hiface)

{
IFClose (hiface);

}

3.8.10 CloseTL
Close System module
void CloseTL(hTL)

{
TLClose (hTL);

}

3.8.11 CloseLib
Shutdown GenTL Producer
void CloseLib(void)

{
GCCloseLib ();

12 December 2013

Page29 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

4 Configuration and Signaling

Every module from the System to tHeata Stream supports a GenTL Port for the
configuration of the module internal settings ane tBignaling to the calling GenTL
ConsumerFor the Buffer mdule the GenTL Port is optional.

For a detailed description of the C function interface and data types see éhSpfeware
Interfacepage52ff. Before a module can be configured or an event can be registered the
module to be accessed must be instantiated. This is done through module enumeration as
described in chapt&Module Enumeration and Instantiatipagel9ff.

4.1 Configuration

To configure a module and access transport layer technology specific settings a GenTL Port
with a GenApi compliant XML description is used. Themodulpeci fi ¢ functi ons
the enumeration, instantiation, configuration and basic information retrieval. Configuration is
done through a virtual register map and a GenApi XML description for that register map.

For a GenApi r e f e fPernirtegface theplLl @ubleshres Rott furcctionds sA

GenApi IPort expects Read and aWrite function which readesr writesa block of data

from the associated device. Regarding the Ge
as a device for the GenApnplementation by implementing a virtual register map. When

certain registers are written or read, implementation dependent operations are performed in

the specified module. Thus the abstraction made for camera configuration is transferred also

to the GeiiL Producer.

The memory layout of that virtual register map is not specified and thus it is up to the GenTL
Producerds 1 mpl ementation. A certain set of
are described in chapt@r Standard Feature Naming Convention for GerfGenTL SFNC)
pagel3dft.

Among the Port functions of the C interface is GCReadPort function and a
GCWritePort function which can be used to implement an IPort object for the GenApi
implementation. These functions resemble the IRwad and Write functions in their
behavior.

Register access through the Port functions is always byte aligmexhse the underlying
technology does not allow byte aligned access the GenTL Producer must simulate that by
reading more bytes than requested and returning only the requested bytes and by doing a
read/modify/write access to the ports register map.

4.1.1 Modules

Every GenTL module except the Buffer module must support the Port functions of thie TLI

the Buffer module can support these functions. To access the registers of a module the
GCReadPort andGCWritePort f uncti ons are called on the m
on theTL_HANDLEfor the System module. A GenApi XML description file and the GenApi

Module of GenlCam is used to access the virtual register map in the module using GenApi
features

12 December 2013 Page30of 142

GEN<i>CAM i

Version 14 GenTL Standard

The URL containing the location of the according GenlCam XML description can be
retrieved through callto the GCGetNunPortURL s and GCGetPortURLInfo functiorns
of the C interfae.

Additional information about the actual port implementation in the GenTL Producer can be
retrieved usingsCGetPortinfo . The information includes for example the port enckéss
or the allowed access (read/write, read | 'y , €) .

Two modules are special in the way the Port access is handled:

4.1.1.1 Device Module
In the Device module two ports are available: First the Port functions can be used with a
DEV_HANDLEJi vi ng access to the Device Genlddul ebs

Consumer can get theORT_HANDLBf the remote device by calling thgevGetPort
function.

Both Ports are mandatory for a GenTL Producer implementation.

4.1.1.2 Buffer Module

The implementation of the Port functions is noandatory for buffers. To check if an
implementation is available call theGCGetPortinfo function with e.g. the
PORT_INFO_MODULE o mma n d . I f no i mplementation is p
must beGC_ERR_NOT IMPLEMENTED

4.1.2 XML Description

The only thing missing to be able to use the GenApi like feature access is the XML
description. To retrieve a list with the possible locations of the XML the
GCGetNumPortURLs function and theGCGetPortURLInfo function can be called.

Three possible locations are defined in a URL like notation (for a definition on the URL see

RFC 3986): Module Register Map (recommendeadGenTL Producer), Local Directory or
Vendor Web Site. A GenTL Consumer 1S require
OLocal Directoryd. The download from a vendo

Supported formats are:
1 Uncompressed XML description files

1 Zip-compressed XML description file$he compression methods used are DEFLATE
and STOREas described in RFC 1951.

4.1.2.1 Module Register Map (Recommended)

A URL i n the Cflemmnextensioraddresfiengthf?$chemaVersion=x.xx]
indicates that the XMLels cr i ption file is | ocated in the
sqguare brackets are optional. The AXx. Xx. X0 st

complies to in the form major.minor.subminor. If the SchemaVersion is omitted the URL
referencedo an XML referring to SchemaVersion 1.0This optional Schema Version is
only to be used with the legacy functi@CGetPortURL . For current implementations the

12 December 2013 Page31of 142

GEN<i>CAM i

Version 14 GenTL Standard

GCGetPortURLInfo function is used to obtain the Schema Version for a specific XML
fle. Opti onally the A/// 06 behind Al ocal : 0 can
local format.

If the XML description is stored in the local register map the document can bleyreatling
the GCReadPort function.

Entries in italics must be replaced with actual values as follows:

Table4-1: Local URL definition for XML description files in the module register map

Entry Description
local Indicates that the XML description file is located i
the virtual register map of the module.
filename Information file name. It is recommended to put th

vendor, model/device angrsioninformation in the
file name separated by an w@nsglcore. For example:
dlguru_system_re\dfor the firstversionof the
System module file of the GenTL Producer comp
TLGuru.

extension Indicates the file type. Allowed types are
1 6 ml6for an uncompressed XML description fil
1 &ipbfor a zipcompresse XML description file.

address Start address of the file in the virtual register map
must be expressed in hexadecimal form without g
prefix.

length Length of the file in bytes. It must be expressed ir
hexadecimal form without a prefix.

SchemaVersio Version the referenced XML complies to. The

version is specified as a major.minor.subminor.
This onlyconcernghe legacyGCGetPortURL
function sincehe oldmechanism has no other yg&a
to report a schema version foeetXML file. For the
newGCGetPortURL Info function the schema
versionshouldbe retrieved through thefo
commands.

A complete local URL would look like this:
local:tlguru_system_rev1.xml;FOF00000;3BF?SchemaVersio n=1.0.0
This file has the information file name Atl g

register map starting at address OxFOF00000 (C style notation) with the length of Ox3BF
bytes.

The memory alignment is not further restricted (byterad in a GenTL module. If the
platform or the transport layer technology requests a certain memory alignment it has to be
taken into account in the GenTL Producer implementation.

12 December 2013 Page32 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

4.1.2.2 Local Directory

URLs in the form A f i filepathextehsiof?’SchemaVersioril.0.0]0 or
i f filén@me.extensigdSchemaVersion=1.0.0] indicate that a file is present somewhere
on the machine running the GenTL Consumer. This notation follows the URL definition as in
the RFC 3986 for local files. Entries in italics must be replaggh the actual values, for
example:

file:///IC|program%?20files/genicam/xml/genapi/tiguru/tiguru_system_revl.xml?
SchemaVersion=1.0.0

This would apply to an uncompressed XML file on an English Microsoft Windows operating
systembés C drive.

Optionall/l/lyo tbhheehiind t he Afil e: 0 can be omitte
notation. This notation does not specify the exact location. A graphical user interface then
would show a file dialog for example.

In order to comply with som&/indows notations t i s al so all owed to r

drive |l etter with a 6: 0.

It is recommended to put the vendor, model or devicevansioninformation in the file
name separated by an underscore. For example: tlguru_system_revl for Weediosiof the
System module file of the GenTL Producer company TLGuru.

Supported extensions are:
1 &mlbéfor uncompressed XML description files
1 o ipbfor zip-compressed XML description files

4.1.2.3 Vendor Web Site (optional)

I f a URL i n hostpathfilermmeaxtatsion{?SchemaVersion=1.00] i s pr esen
it indicates that the XML description docum
site. This notation follows the URL definition as in the RFC 3986 for the http protocol.
Entries in italics must be replaced wthe actual values, e.g.

http://www.tlguru.org/xml/tiguru_system_rev1.xml

This would apply to an uncompressed XML file found on the web site of the TLGuru
company in the xml sub directory.

It is recommended to put the vendor, model or devicevansioninformation in the file
name separated by an underscore. For example: tlguru_system_revl for Weediosiof the
System module file of the GenTL Producer company TLGuru.

Supported extensions are:
1 xml for uncompressed XML description files
1 zip for zipcompressed XML description files

4.1.3 Example
{

/I Retrieve the number of available URLs

12 December 2013 Page33of 142

° "”b(-
GEN<I>CAM i
Version 14 GenTL Standard
GCGetNumPortURLs(hModule, NumURLS);
for(i=0; i<NumURLs; i++)
{
URLSize = 0;
GCGetPortURLInfo (hModule, i, URL_INFO_URL, 0, 0, &URLSize);
/I Retrieve an string buffer to store the URL
GCGetPortURLInfo (hModule, i, URL_INFO_URL, 0, pURL, &URLSize);

if (ParseURLLocation(pURL) == local)
{
/I Retrieve the address within the module register map from the URL
Addr = ParseURLLocalAddress(pURL);
Length = ParseURLLocalLength(pURL);
/I Retrieve an XMLBuffer to store the XML with the size Length
é
/I Load xml from local register map into memory
GCReadPort (hModule, Addr, XMLBuffer, Length);

4.2 Signaling

The Signaling is used to notify the GenTL Consumer on asynchronous events. Ustiadly all

communication is initiated by the GenTL Consumer. With an event the GenTL Consumer can
get notified on specific GenTL Producer operations. This mechanism is an implementation of

the observer pattern where the calling GenTL Consumer is the observéneafkenTL

Producer is being observed.

The reason why an event object approach was chosen rather than callback functions is mainly

thread priority problems. A callback function to signal the arrival of a new buffer is normally
executed in the thread contexf the acquisition engine. Thus all processing in this callback
function is done also with its priority. If no additional precautions are taken the acquisition

engine is blocked as long the callback function does processing.

By using an evenbbjectbasd approach the acquisition engine for example only prepares the

necessary data and then signals its availability to the GenTL Consumer through the previously
registered event objects. The GenTL Consumer can decide in which thread context and with
whichpi ority the data processing I
generation are decoupled.

4.2.1 Event Objects
Event objects allow asynchronous signaling to the calling GenTL Consumer.

12 December 2013

S done.

Page34 of 142

Thu

GEN<i>CAM i

Version 14 GenTL Standard

Event objects have two states: signaled or not signale@vAntGetData function blocks

the calling thread until either a user defined timeout occunréae event object is signaled or
the wait is terminated by the GenTL Consumer. If the event object is signaled prior &l the ¢
of the EventGetData functions, the function returns immediately delivering the data
associated with the event signaled.

Not every event type can be registered with every module and not every module needs to
iImplementevery possible event type. If a module is not listed for an event it does not have to
be i mplemented in that modul eds i mplementat.

The maximum size of the data delivered by an event is defined in the event description and
can be retrieved through theventGetinfo function. The actual size is returned by the
EventGetData function which retrieves the event

There are no mandatory event types. If an event type is not implementedniila Beducer

the GCRegisterEvent should returrGC_ERR _NOT IMPLEMENTED an event type is
implemented by a GenTL Producer module it is recommended to register an event object for
that event type. The following event types are defined:

Table4-2: Event types per module

Event Type Modules Description

Error All A GenTL Consumer can get notified on asynchron
errors in a module. These are not errors due to
function calls in the C interface or in the GenApi
Feature access. These have their own error report]
This event applies for example to an error while dg
is acquired in the acquisition engine of a Data Stre
module.

New Buffer DataStream| New data$ present in a buffer in the acquisition
engine. In case the New Buffer event is implement
it must be registered on a Data Stream module. Af
registration the calling GenTL Consumer is informg¢
about every new buffer in that stream. If the
EventFlush function is called all buffers in the
output buffer queue are discarded. If a
DSFlushQueue is called all events from the event
gueue are removed as well. Please use the
BUFFER INFO IS QUEUEDNfo command in
order to inquire the queue state of a buffer.

Feature Invalidate Local Device This event signals to a calling GenTL Consumer th
the GenTL Producer driver changed a value in the
register map of #aremote device and if this value is
cached in the GenApi implementation the cache m
be invalidated.

This is especially useful with remote devices whert
the GenTL Producer may change some informatio
that is also used by the GenTL Consumer. For the

12 December 2013 Page35of 142

GEN<I>CAM Fie

Version 14

GenTL Standard

Event Type

Modules

Description

local modules this is not necessary as the
implementation knows which features must not be
cached. The use of this mechanism implies that th
user must make sure that all terminal nodes the fe
depends on are invalidated in order to update the
GenApi cack. The provided feature name may not
standardized in SFNC. In case the feature is covel
through SFNC the correct SFNC name should be |
by the GenTL Producer. In case the provided featd
name is under a selector the GenTL Consumer my
walk throughall selector values and invalidate the
provided feature and all nodes it depends on for e\
selector value.

Feature Change

Local Device

This event communicates to a GenTL Consumer t|
GenApi feature must be set to a certain value. Thig
for nowonly intended for the use in combination wi
the ATLParamsLockedo st
GenTL Producer knows when stream related featy
must be |l ocked. This e\
unl ock 6006 of that f eat
added vinen appropriate.

The value of a specified feature is changed via its
IValue interface, thus a string information is set. N
error reporting is done. If that feature is not set or i
error occurs no operation is executed and the Gen
Producer is not infaned.

RemoteDevice Event| Local Device

This event communicates to a calling GenTL
Consumer that a GenApi understandable event
occurred, initiated by the Remote Device. The eve
ID and optional data delivered with this event can |
put into a GenApi Addaer which then invalidates all
related nodes.

This event used to be called Feature Device Even
has been renamed in order to be in sync with the
enumeration for the event type.

Module Event

All

This event communicates to a calling GenTL
Consumer thiaa GenApi understandable event
occurred initiated by the GenTL Producer module {
event was registered oihe event ID and optional
data delivered with this event can be put into a
GenApi Adapter which then invalidates all related
nodes.

12 December 2013 Page36 of 142

GEN<i>CAM i

Version 14 GenTL Standard

4.2.2 Event Data Queue

The event data queue is the core of the Signaling. This is a thread safe queue holding event
type specific data. Operations on this queue must be locked for example via a mutex in a way
that its content may not change when either one of the evettidiug is accessing it or the
module specific thread is accessing it. The GenTL Producer implementation therefore must
make sure that access to the queue is as short as possible. Alternatively a lock free queue can
be used which supports dequeue operafiimm multiple threads.

An event objectd state is signaled as | ong a

Each event data queue must have its own lock if any to secure the state of each instance and to
achieve necessary parallelism. Both read and writeatpas must be locked. The two
operations of event data retrieval and the event object signal state handling in the
EventGetData function must be atomic. Meaning that, if a lock is used, the lock on the
event data queumust be maintained over both operations. Also the operation of putting data

in the queue antheevent objedi state handling must be atomic.

4.2.3 Event Handling

The handling of the event objects is always the same indepgndénhe event type. The

signal eason and the signal data of course depend on the event type. The complete state
handling is done by the GenTL Producer driver. The GenTL Consumer may call the
EventKill ~ function to terminate a single instance of a waitivgntGetData operation.

This means that if more than one thread waits for an eventEvkatKill function
terminates only one wait operation and other threads will continue execution.

4.2.3.1 Registration

Before the GenTL Consumer can be informed about an event, the event object must be
registered. After a module instance has been created in the enumeration process an event
object can be created with tECRegisterEvent function. This function returns a unique
EVENT_HANDLEwvhich identifies the registered event object. To get information about a
registered event thEventGetinfo function can be used. There must be only one event
registered per module and event type. If an event object is registered twice on the same
module the GCRegisterEvent function must return an error

GC _ERR RESOURCE_IN USE

To unregiser an event object th&CUnregisterEvent function must be called. If a
module is closed all event registrations are automatically unregiskrents that are still in
the queue while an event object is unregisteme silently discarded. Pending wait operations
through calls toEventGetData are terminated with &C ERR ABORWhen the event
object is unregistered throu@CUnregisterEvent

After anEVENT_HANDLEs obtained the GenTL Consumer can wait for the event object to
be signaled by calling thEventGetData function. Upon delivery of an event, the event
object caries data. This data is copied into a GenTL Consumer provided buffer when the call
to EventGetData was successful.

12 December 2013 Page37 of 142

GEN<i>CAM i

Version 14 GenTL Standard

4.2.3.2 Notification and Data Retrieval

If the event object is signaled, data was put into the event data qusai@e point in time.

The EventGetData function can be called to retrieve the actual data. As long as there is
only one listener thread this function always returns the stored data or, if no data is available
waits for anevent being signaled with the provided timeout. If multiple listener threads are
present only one of them returns with the event data while the others stay in a waiting state
until either a timeout occur&ventKill Is issted or until the next event data becomes
available. If EventKill is callel exactly one call toEventGetData will return

GC ERR ABOR®@&ven if EventKill is called while no EventGetData oaths waiting. Also

the return ofGC_ERR_ABORTMas higher priority than delivering the next event from the
queue so that even if there are one or more events in the queue ready to be delivered to the
user through a callot EventGetData , after a call toEventKill the next call to
EventGetData will return GC_ERR ABORTN this case no emt is removed from the
gueue and no data is delivered to the GenTL ConsurhercounteEVENT NUM FIREIs

not affectedby the calls tceventKill .

'In case an event object is unregistietterough a call tésCUnregisterEvent it's previous
state is lost. This also applies to previous calls to the EventKill funaien reregistering
an eventhrough a call tao GCRegisterEvent on this port lateon EventGetData ~ will
not returnGC_ERR_ABORIntil EventKill is called again.

When data is read with this functiohet data is removed from the queue. Afterwards the
GenTL Producer implementation checks whether the event data queue is empty or not. If
there is more data available the event object stays signaled and next the call to
EventGetData will deliver the next queue entry. Otherwise the event object is reset to not
signaled state. The maximum size of the buffer delivered thr&wghtGetData can be
queried using EVENT_SIZE_MAX with the EventGetinfo function The GenTL
Consumer must not perform data size queries siraal @f EventGetData with a NULL

pointer for the buffer will remove the data from the queue without delivéritig this case

the event counts as fired and the data is discarded.

The exact type of data is dependent on the event type and the GenTL Producer
implementation. The data is copied into a user buffer allocated by the GenTL Consumer. The
content of the eent data can be queried with tlReentGetDatalnfo function. The
maximum size of the buffer to be filled is defined by the event type and can be queried using
EVENT INFO DATA SIZE MK after the buffer is deliveredThis information can be
gueried using th&ventGetinfo function.

The eventsarehandledas describedh the following steps:
1 Register a DeviceEvent on the corresponding GenTL module.
1 Inquire the max needed buffer size.

1 Allocate the buffer to receive the event data.

12 December 2013 Page38of 142

GEN<i>CAM i

Version 14 GenTL Standard

1 Wait for the event and data. The structure of the data in the provided buffer is not
defined and GenTL Producer dependent. The only exception to that would be the
New Bufferevent which provides a defined internal struct.

1 Extract the data in the buffer usirgventGetDatalnfo . This step is not
necessary in cases when tBenTL Roducer knows the contents of the buffer
delivered througltventGetData , such as in case of the New Buffer event.

Unregister event.
Deallocate buffer.

As described the content of the buffer retrieved thrdinggntGetData is GenTL Producer
implementation specific and may be parsed usingeihentGetDatalnfo function. The
only exception to that is the New Buffer event which will return the
EVENT_NEW_BUFFER_DATA structure.

For the Device Event eventSVENT REMOTE DEVICEthe GenTL Producer must provide
two types of information about every single event, so that it can be "connected" to the remote
device's nodemap:

1 Event ID queried throughEventGetDatalnfo (EVENT_DATA ID. The ID is
passed as a string representation of hexadecimal form, for example "@maALt
t he | e a.dTihen Bp cah Obe @lso queried directly in numeric form using
EventGetDatalnfo (EVENT_DATA NUMID

1 Event data buffer containing the (optional) data accompanying the event. It must
correspond with the data addressable from the remote device nodeenbpgiitning
of the buffer must correspond with address 0 of the nodemap's event port. For example
for GIigE Vision devices this is by convention the entire EVENTDATA packet,
without the 8byte GVCP header.

Also for the modulé svents EVENT MODLE) the GenTL Producer must provide two types
of information about every single event, s

1 Event ID: queried througlEventGetDatalnfo (EVENT DATA ID. The ID is
passed as a string representation of hexadecimal form, for example "@mEaALt
t he | e a.dTihen P cah Obe @lso queried directly in numeric form using
EventGetDatalnfgEVENT DATA NUMID

1 Event data: buffer containing the (optional) data accompanying the event. It must
correspond with the data addressable fromntie d u hcelémsp, the beginning of
the buffer must correspond with addressf Ghe nodemap'event port, similar to way
theEVENT REMOTE_DEVICEs working.

12 December 2013 Page39 of 142

GEN<i>CAM i

Version 14 GenTL Standard

Note: to improve interoperability, it is recommended that for device events based on
"standard" event data formats, the buffer delivered thrabgintGetData is directly the

buffer that can be fed to the corresponding standard GenApi event adapter. For example in
case of GigE Vision it would be the entire EVENTDATA packet, including the header.

If queued event data is not eded anymore the queue can be emptied by calling the
EventFlush function on the associatdeVENT_HANDLETo inquire the queue state of a
buffer the GenTL Consumer can cdllSGetBufferinf o with the info command
BUFFER_INFO IS QUEUED

Signals that occur without a corresponding event object being registered using
GCRegisterEvent are silently discarded.

A single evat notification carries one event and its data.

For example a GIigE Vision device event sent through the message channel carrying multiple
EventIDs in a single packet must result in multiple GenTL Producer events. Each GenTL
Producer event will then prowda single GigE Vision EventID.

4.2.4 Example
This sample shows how to register a New Buffer event.

GCRegisterEvent(hDS, EVENT _NEW_BUFFER, hNewBufferEvent);
CreateThread (AcgFunction);
}

4.2.4.1 AcgFunction

while('EndRun)

{
EventGetData (hNewBufferEvent, EventData);

if (successful)

// Do something with the new buffer

}
}
}

4.3 Data Payload Delivery

The GenTL Producer is allowed to modify the image data acquired from the remote device if
neededor convenient for the user. Examples of such modifications can be for example a
PixelFormat conversion (for example when decoding a Bayer encoded color image) or
LinePitch adjustment (elimination of the line padding produced on the remote device).

Wheneve a modification leads to a change of basic parameters required to "understand” the
image, the GenTL Producer must inform the GenTL Consumer about the modifications. It is
mandatory to report the modified values throughBhE-FER INFO CM@Bommands of the

12 December 2013 Page40of 142

GEN<i>CAM i

Version 14 GenTL Standard

C interface. The image parameters that must be reported when changed by the GenTL
Producer are:

Width, Height (image size)

X offset, Y offset (AOI offsets)

X padding, Y padding (affecting line and frame alignment)
Pixd format

Payload type

Payload size

= =4 -4 —a —a -9

If a givenBUFFER_INFO CM@Rommand is not available, the GenTL Consumer assumes,
that the GenTL Producer did not modify the corresponding parameter and that it corresponds
to the seihgs of the remote device. For example if the query BaFFER INFO
PIXELFORMAT returns an error, meaning that tHRUFFER INFO PIXELFORMAT
command is not available, the GenTL Camgu should assume that the GenTL Producer did
not modify the pixel format and that the pixel format in the buffer corresponds to the
PixelFormat feature value of the remote device.

The only exception among the essential image describing parametersaylteasize value
which needs to be known before any buffers are delivered (it is used for buffer allocation).
Thus, if the GenTL Producer modifies the payload size it has to report the actual value
through theSTREAM_NFO_ PAYLOAD SIZEEommand, as described in chafiet.1

It might be useful to report the modifications also through corresponding features of the
stream and buffer nodemaps.

The GenTL Producer must take special care when fgingiimage data within a stream

carrying chunk data payload type. Such modifications must not result in a corrupted chunk
data layout meaning that the GenTL Producer must reconstruct the chunk buffer.

12 December 2013 Page4lof 142

GEN<i>CAM o
Version 14 GenTL Standard

5 Acquisition Engine

5.1 Overview

The acquisition engine ithe core of the GenTL data stream. Its task is the transportation
itself, which mainly consists of the buffer management.

As stated beforahe goal for the acquisition engine is to abstract the undertiatey transfer
mechanism so that it can be usiéaot for all, then for most technologies on the market. The
target is to acquire data coming from an input stream into memory buffers provided by the
GenTL Consumer or made accessible to the GenTL Consumer. The internal design is up to
the individual impementation, but there are a few directives it has to follow.

As an essential management element a GenTL acquisition engine holds a numtsznalf
logical buffer pools.

5.1.1 Announced Buffer Pool

All announced buffers are referenced here and are thus kit acquisition engine. A
buffer is known from the point when it is announced until it is revoked (removed from the
acquisition engine). No buffer may be added to or removed from this pool during acquisition.
This also means that a buffer will staytims pool even when it is delivered to the GenTL
Consumer (see below).

The order of the buffers in the pool is not defined. The maximum possible number of buffers
in this pool is only limited due to the system resources. The minimum number of buffers in
the pool is one or more depending on the technology or the implementation to allow
streaming.

5.1.2 Input Buffer Pool

When the acquisition engine receives data from a device it will fill a buffer from this pool.
While a buffer is filled it is removed from the daand if successfuy filled, it is put into the
output buffer queue. If the transfer was not successfifl the acquisition has been stopped
with ACQ STOP_FLAS KILL specifiedthe buffer isplacedinto the output bufer queue

by default. It is up to the implementor to provide additiomatfer handlingmodes which
would hand that partially filled buffer differently.

The order of the buffers in the pool is not defined. Only buffers present in the Announced
Buffer Poolcan be in this pool. The maximum number of buffers in this pool is the number of
announced buffers.

5.1.3 Output Buffer Queue

Once a buffer has been successfully filled, it is placed into this queue. As soon as there is at
least one buffer in the output buffgueue a previous registered event object gets signaled and
the GenTL Consumer can retrieve the event data and thus can identify the filled buffer.

When the event data is retrieved the associated buffer is removed from the output buffer
queue. This also na@s that the data and thus the buffer can only be retrieved once. After the

12 December 2013 Page42 of 142

GEN<i>CAM i

Version 14 GenTL Standard

buffer is removed from the output buffer queue (delivered) the acquisition engine must not
write data into it. Thus this is effectively a buffer locking mechanism.

In order to rege this buffer a GenTL Consumer has to put the buffer back into the Input
Buffer Pool (requeue).

The order of the buffers is defined by theaffer handling modeBuffers are retrieved by the

New Buffer event in a logical firsh-first-out manner. If theacquisition engine does not
remove or reorder buffers in the Output Buffer Queue it is always the oldest buffer from the
queue that is returned to the GenTL Consumer. Only buffers present in the Announced Buffer
Pool which were filled can be in this queue.

5.2 Acquisition Chain

The following description shows the steps t ¢
point of view. Image or data acquisition is performed on the Data Stream module with the
functions using theDS_HANDLE Thus before an acquisitionam be carried out, an
enumeration of a Data Stream module has to be performed (see cBapMedule
Enumerationpage 19ff). For a detailed description of the C functionsdadata types see

chapter6 Software Interfacpage52ff.

Prior to the following steps the remote device and, if necessary (in case a grabber is used), the
GenTL Device mdule should be configured to produce the desired image format. The remote
devi RORD BIANDLE an be retrieved fr omDev@etortGenTL LC
function.

12 December 2013 Page43of 142

GEN<I>CAM 9?_4? I
Version 14 GenTL Standard
_ Allocated

xxu
"'\.“ H"‘\\
\ AllocAndAnnounce
Revoke

L~
Flushiall_discard) .
e
. Delver/Flush{all_discard)
/ Cueue “~
o
_——Flush [Dutput)}—
—
_o—"-'-'-‘-'-'-'-
——— __;——'_'_'-'-
T Flush {Inputl—"
Start af new Frame Frame :'-'-.l:quisitic;n complete

5 ,,
. //

Figure 55: Acquisitontrai n seen from a b ublfferehandlisgngue)r spect

5.2.1 Allocate Memory

First the size of a single buffer has to be obtained. In order to obtain that information the
GenTL Consumer must query the GenTL Data Stream module (important: nontbe re
device) to check ithe payload size information is provided through the GenTL Producer by
calling DSGetInfo function with the command
STREAM INFO DEFINES PAYLOADSIZE If the retured information is true the
Consumer must calDSGetinfo with STREAM INFO PAYLOAD SIZHo retrieve the
current payloadize. Additionally theGenTL Producer may providei@ P a y | o dedisd z e 0
in the node map of the Data Stredhodule reflecting theGenTL Produceds payloadsize.

The valuereported througtthat feature must béhe sameasprovided througlibSGetinfo .

12 December 2013 Page44 of 142

GEN<i>CAM i

Version 14 GenTL Standard

In case the returned information of DSGetlnfo with
STREAM_INFO DEFINES PAYLOADSIZEs false the Consumer needs to inquire the
Payloadsize through the node map of the remote devidee remote device port can be
retrieved via tk DevGetPort function from the according Device module. The GenTL
Consumer has to select the streaming channel in the remote device and read the
APayl oadSizeo standard feature.

In any case the GenTL Producer together withunderlying technology must provide a way

to retrieve the payload sizé/hen the device does not provide the PayloadSize feature (for
example in case a GenTL Producewhich isimplementingan interface standardhich is

not specifying PayloadSize asmandatory feature), the GenTL Produdself must report

the required payload size using stream info commands
STREAM INFO _DEFINES PAYLOADSIZE and STREAM_INFO PAYLOAD SIZE
Failure to query the required payload size would typically disallow the GenTL Consumer to
set up the acquisition properly. It might try to calculate the payload size based on the device
configuration, but such calculation would never be reliable.

If STREAM INFO DEFINES PAYLOADSIZEeturns true the Data Stream Moduheist

provide the buffer describing parameters. This allows the GenTL Producer to modify the
buffer parameters to preprocess an image. In case the GenTL Prisddoerg that it must
implement all buffer describing parameters. For a detailed description please refer to chapter
4.3

With that information one or multiple buffers can be allocated as the GenTL Consumer sees
fit. The allocationcan also be done by the GenTL Producer driver with the combined
DSAllocAndAnnounceBuffer function. If the buffers are larger than requested it does
not matter and the real size can be obtained throughSkeetBufferinfo function.

If the buffers are smaller than requested the error event is fired @uffex module(if the

error eventis implementedon the Buffer moduleand on the transmittingpata Stream
modulewith aGC ERR BUFFER_ TOO_ SMAgiror codelt is up to the GenTL Producer if

a Atoo small o buffer i s f i |drittde buifertismotfiledr t s of
at all. In both cases the buffer should be deliverethe GenTL Consumer if the underlying
technology allows it and the according BUFFER_INFO_CMDs
BUFFER INFO IS INCOMPLETE BUFFER INFO SIZE FILLED and
BUFFER INFO DATA LARGER THAN BUFFERbuld report the fill state. Also in case

one or more of the announced buffers are smaller than the payload size the GenTL Producer
can refuse to start the acquisititimoughDSStart Acquisition returningan error code
GC_ERR BUFFER TOO_SMALL

The payload sizefor each buffer no matter if defined by the GenTL Producer or by the
remote devicemay change during acquisition as long las acquired payload size delivered
is smaller than thactualreported at acquisition start. Tpayload sizeof a given buffer can
be queried through ttRUFFER INFO_CMDs

5.2.2 Announce Buffers

All buffers to be used inhe acquisition engine must be made known prior to their use.
Buffers can be added (announced) and removed (revoked) at any time no grab is active.

12 December 2013 Page45of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

Along with the buffer memory a pointer to user data is passed which may point to a buffer
specific implement#on. That pointer is delivered along with the Buffer module handle in the
New Buffer event.

The DSAnnounceBuffer and DSAllocAndAnnounceBuffer functions return a
unique BUFFER HANDLEto identify the buffer in the process. The minimum number of
buffers that must be announced depends on the technology used. This information can be
queried from the Data Stream module features. If there is a known maximum this can also be
gueried.Otherwise the number of buffers is only limited by available memory.

The acquisition engine normally stores additional data with the announced buffers to be able
to e.g. use DMA transfer to fill the buffers.

5.2.3 Queue Buffers

To acquire data at least one buffeas to be queued with th#SQueueBuffer function.

When a buffer is queued it is put into the Input Buffer Pool. The user has to explicitly call
DSQueueBuffer to place the buffers intthe Input Buffer Pool. The order in which the
buffers are queued does not need to match the order in which they were announced. Also the
gueue order does not necessarily have an influence in which order the buffers are filled. This
depends only on theuffer handlingmode.

5.2.4 Register New Buffer Event

An event object to the data stream must be registered usingetiBufferEvent ID in

order to be notified on newly filled buffers. Tl&CRegisterEvent function returns a

unigue EVENT_HANDLEvhich can be used to obtain event specific data when the event was
signal ed. For the A New BUW&EERf HANDLEME the user ddtah i s d
pointer.

5.2.5 Start Acquisition

First the acquisition engine on the host is started WweDSStartAcquisition function.
After that the acquisition on the remote device is to be started by setting the
AAcqui sitionStarto standard feature via the

If adevice implements the SFNC Transfem@ol featuresthe GenTL Consumer may need
to start the transfesn the remote device as wellepending on the operating mode.

5.2.6 Acquire Image Data
This action is performed in a loop:

T Wait for the fAiNew Buf #2Sigoalingpage3df) t o be si gn:
1 Process image data
1 Requeue buffer in the Input Buffer Pool

With the event data from the signaled event the newly filled buffer can be obtained and then
processed. Astated before no assumptions on the order of the buffers are made except that
thebuffer handlingnode defines it.

12 December 2013 Page46 of 142

GEN<i>CAM i

Version 14 GenTL Standard

Requeuing the buffers can be done in any order witb8®@ueueBuffer function. As long
as the buffer iiot in the Input Buffer Pool or in the Output Buffer Queue the acquisition
engine will not write into the buffer. Thus the buffer is effectively locked.

5.2.7 Stop Acquisition

When finished acquiring image data the acquisition on the remote device is to fedsfop
necessary. This can be done by setting the |
device. If it is present the command should be executed. Afterwards the
DSStopAcquisition function is called to stofhe acquisition on the host. By doing that

the status of the buffers does not change. That implies that a buffer that is in the Input Buffer
Pool remains there. The sansetruefor buffers in the Output Buffer Queue. This has the
advantage that buffers wdhm were filled during the acquisition stop process still can be
retrieved and processedf ACQ STOP FLAS KILL is specified in the call to
DSStopAcquisition a partially filled luffer is by default moved to the output buffer
queue for processingDSGetBufferinfo with BUFFER _INFO IS INCOMPLETE

would indicate that the buffer is not complete.

If adevice impeéments the SFNC Transfer Control featutee, GenTL Consumer may need
to stop the transfesn the remote devigelepending on the operating mode.

5.2.8 Flush Buffer Pools and Queues

In order to clear the state of the buffers to allow revoking them, the bb#eesto be flushed

either with theDSFlushQueue function or with theEventFlush function. With the
DSFlushQueue function buffers from the Input Buffer Bbcan either be flushed to the
Output Buffer Queue or discarded. Buffers from the Output Buffer Queue also must either be
processed or flushed. Flushing the Output Buffer Queue is done by dallergFlush

function. Usingthe EventFlush f unct i on on t he digtaddsthre biBfers f er 0
from the Output Buffer Queue.

5.2.9 Revoke Buffers

To enable the acquisition engine to free all resources needed for acquiring imagevaas
the announed buffers. Buffers that are referenced in either the Input Buffer &otie
Output Buffer Queue caot be revoked. After revoking a buffer with the
DSRevokeBuffer function it is not known to the acquisition engine dhus can neither be
gueued nor receive any image data.

The order in which buffers can be revoked depends on the method in which they where
announced. Buffers can be revoked in any order if they were announced by the
DSAnnounceBuffer function. More care has to be taken if the
DSAllocAndAnnounceBuffer function is used. Normally underlying acquisition
engines must not change the base pointer to the memory containing the diata \wiiffer

object. If theDSAllocAndAnnounceBuffer function is used the base pointer of a buffer
object may change after another buffer object has been revoked using the
DSRevokeBuffer function. Neverthelessit is recommended to keep the basenter of a

buffer for the litime of the buffer handle.

12 December 2013 Page47of 142

GEN<i>CAM i

Version 14 GenTL Standard

5.2.10 Free Memory
If the GenTL Consumer provided the memory for the buffers using the
DSAnnounceBuffer function it also has to free it. Memory allocated by the GenTL

Producer implementation witBSAllocAndAnnounceBuffer function is freed by the
library if necessary. The GenTL Consumer must not free this memory.

5.3 Buffer Handling Modes

Buffer handlingmodes describe the internal buffer handling during acquisition. There is only
one mandatory default mode. More modee defined in the GenlCanGenTL Standard
Feature Naming Convention document.

A certain mode may tfer from another in these aspects:
1 Which buffer is taken from the Input Buffer Pool to be filled

1 Atwhich time a filled buffer is moved to the Output Buffer Queue and at which position it
is inserted

1 Which buffer in the Output Buffer Queue is overwrit{érany at all) on an empty Input
Buffer Pool

The graphical description assumes that we are looking on an acquisition start scenario with

five announced and queued buffers BO to B4 ready for acquisition. When a buffer is delivered

the image numberisstate bel ow t hat event. A solid bar on
presence in a Buffer pool. A ramp indicates image transfer and therefore transition. During a

thin line the Buffer is controlled by the GenTL Consumer and locked for data reception.

5.3.1 Default Mode

The default mode is designed to be simple and flexible with only a few restrictions. This is
done to be able to map it to most acquisition techniques used today. If a specific technique
cannot be mapped to this mode the goal has to be actigwaipying the data and emulating

the behavior in software.

In this scenario every acquired image is delivered to the GenTL Consumer if the mean
processing time is below the acquisition time. Peaks in processing time can be mitigated by a
larger number obuffers.

12 December 2013 Page48of 142

GEN<I>CAM

Version 14 GenTL Standard

5

Image
1 2 3 4 5 6 7 8 9 10 11 12 13

14

15 16

0] 0 0]]]] | et el | |] el | el | _—]
0

17 18

BO E"] ° >
] | — >
Bl — I) >
B2 prr e = e ——————————
B3 s — I
| — D‘
B4 ‘ I
User == T eZEE T - E— e o >
0 1 2 3 4 g € 7 g8 9 12
Qutput Queue B input Pool == Request fromUser > Deliver to User _—"1 Image transfer el 1 0st inBgE transfer

Figure56: Def aul t acqui sition

from

t he

The buffer acquired first (the oldest) is always delivered to the GenTL Censtim buffer
is discarded or overwritten in the Output Buffer Queue. By successive calls to retrieve the
event data (and thus the buffers) all filled buffers are delivered in the order they were

acquired. This is done regardless of the time the buffefiliexhs

GenT|

It is not defined which buffer is taken from the Input Buffer Pool if new image data is
received. If no buffer is in the Input Buffer Pool (e.g. the requeuing rate falls behind the
transfer rate over a sufficient amount of time), an incoming émagl be lost. The

acquisition engine will be stalled until a buffer is requeued.
Wrap-Up:

T Thereds no defined order

n which t

1 Assoon as itis filled a buffer is placed at the end of the Output Buffer Queue

he

buf

1 The acquisition engine stalls if the Input Buffer Pool becomes empty and as long as a

buffer is queued.

5.4 Chunk Data Handling

5.4.1 Overview

The GenlCam GenApi standard contains a notion of "chunk dEt&se are chunks of data
present in a single buffer acgedt from the deviceogether with or without other payload
type data Each chunk is identified unequivocally by its ChunkID (up teb@4unsigned

integer), which maps it to the corresponding port node in the remote device's XML
description file. The informtion carried by individual chunks is described in the XML file.
To address the data in the chunk, the GenApi implementation must know the position (offset)
of the chunk in the buffer and its siZghe structure of chunk data in the buffer is technology
specific and it is therefore the responsibility of the GerProducer to parse the chunk data in
the buffer (if there are any). To parse a buffer containing cllatd the consumer usdke
function DSGetBufferChunk Data , which reportgshe number of chunks in the buffer and
for each chunk its ChunkID, offset and size as an arra\5IBfGLE CHUNK DATA

structures. This information is sufficient to connect the chunk to theeemate vi c e 6 s
(for examplethrough the generic chunk adapter of GenApi reference implementation).

12 December 2013

Page49 of 142

nod

GEN<i>CAM i

Version 14 GenTL Standard

The acquired buffer might contain only the chunk data or the data might be mixed within the
same buffer witranimage or other data. To querf/a givenbuffer contains the chunk data,

theBUFFER _INFO CONTAINS CHUNKDAT@®mmandnmay be used which would return a

true in case the buffer contains chunk data or the fun€i®@etBufferChunkData can

be queried which, in case the buffer contains accessible chunk data, would return the number
of chunks available.

There are other chunk data related buffer info commands, such as
BUFFER INFO IMAGEPREENT (indicating that the buffer contains also an image) or
BUFFER_INFO CHUNKLAYOUTIRan help to check, if the chunk structure has changed
since the last delivered buffer and if it is necessary to parse it agahg.
STREAM INFO NUM_ CHUNKS M#otnmand reports the maximum number of chunks to
be expected in a buffer acquired through given stream (if that maximum is known a priori).

In situations when the GenTL Consumer knows thenk data structure, such as when
accessing a device of known standard technology, it's not necessary to use the
DSGetBufferChunkData function to parse the bufferthe GenTL Consumer can use
other more direct appach to extract the data (such as using directly a standard chunk adapter
in GenApi reference implementation).

5.4.2 Example

{
/I Check if the buffer contains chunk data

DSGetBufferinfo (hStream, hBuffer, BUFFER_INFO_PAYLOADTYPE, Type, PayloadType,
SizeOfPa yloadType);

if (PayloadType == PAYLOAD_TYPE_CHUNK_DATA)
{

ChunkListSize =0;
DSGetBufferChunkData(hStream, hBuffer, 0, ChunkListSize)
{

/I Alternative ly it would be possible to inquire the max number of

/I chunks per buffe rthrough ~ STREAM_INFO_NUM_CHUNKS_MAX

DSGetlnfo(hStream, STREAM_INFO_NUM_CHUNKS_MAYpe, ChunkListSize,
sizeof(ChunkListSize));

/ I'In this case the consumer needs error checking in case the

/I GenTL P roducer cannot provide that infor mation

/I Allocate array of SINGLE_CHUNK_DATA structures
DSGetBufferChunkData(hStream, hBuffer, ChunkArray, ChunkListSize)

12 December 2013 Pageb0of 142

GEN<i>CAM o
Version 14 GenTL Standard

/I Pass Chunk Array to GenApi Port

/I Free ChunkArray.

12 December 2013 Pageblof 142

GEN<i>CAM o
Version 14 GenTL Standard

6 Software Interface

6.1 Overview

A GenTL Praucer implementation is provided as a platform dependent dynamic loadable
library; under Microsoft Windows platform this would be a dynamic link library (DLL). The
file extension of the Ilibrary is 6ctidé for

To enable easy damical loading and to support a wide range of languages a C interface is
defined. It is designed to be minimal and complete regarding enumeration and the access to
Configuration and Signaling. This enables a quick implementation and reduces the workload
ontesting.

All functions defined in this chapter are mandatory and must be implemented and exported in
the libraries interface; even if no implementation for a function is necessary.

6.1.1 Installation

In order to install a GenTL Producer an installer needadtb the path where the GenTL
Producer implementationcan be found to a path variable with the name
GENICAM_GENTL{32/64} PATH. The entries within the var.i
Wi ndows and 6: 6 on UNI X based sriesfor82isand | n or
64Bit implementations residing on the same system two variables are defined:
GENICAM_GENTL32_PATH for 32Bit GenTL Producer implementations and
GENICAM_GENTL64_PATHbr 64Bit GenTL Producer implementations. A consumer may

pick the appropate version of the environment variable.

6.1.2 Function Naming Convention
All functions of the TLI follow a common naming scheme:

Prefix Operation Specifier
Entries in italics are replaced by an actual value as follows:
Table6-3: Function naming convention

Entry Description
Prefix Specifies the handle the function works on. The handle repres
the module used.
Values:

GC if applicable for no or all modules (GC for GenlCam)
TL for System module (TL for Transport Layer)

IF for Inteface module (IF for Interface)

Dev for Device module (Dev for Device)

DS for Data Stream module (DS for Data Stream)

Event for Event Objects

= =4 =4 8 98 9

Operation Specifies the operation done on a certain module.
Values (choice):
9 Open to open a module

12 December 2013 Pageb2 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

Entry Description

1 Close to clos@ module
i Get to query information about a module or object

Specifier This is optional. If an operation needs additional information, if
provided by theSpecifier

Values (choice):

1 xxxInfo to retrieve xxxobject specific information

1 Numxxx to retrievehe number of xxobjects

For example the functionTLGetNuminterfaces wor ks on t he Systerm
TL_HANDLEand queries the number of available interfadésClose for instance close
the System module.

6.1.3 Memory and Object Management

The interface is designed in a way that objects and data allocated in the GenTL Producer
implementation are only freed orallocatednside the library. Vice versa all objects and data
allocated by the chiihg GenTL Consumer must only leallocatedand freed by the calling
GenTL Consumer. No language specific features except the ones allowed by ANSI C and
published in the interface are allowed.

The function names of the exported functions must be undedor@ihe function calling
convention is stdcall for x86 platforms and architecture dependent for other platforms.

This ensures that the GenTL Producer implementation and the calling GenTL Consumer can
use different heaps and different memory allocatiomatejies. Also language
interchangeability is easier handled this way.

For functions filling a buffer (e.g. a C string) the function can be called witbJlaL pointer

for thechar* parameter (buffer). ThpiSizeparameter is then filled with the size offteu

needed to hold the information in bytes. For C strings that does incorporate the terminating 0
character. A function expecting a C string as its parameter not containing a size parameter for
it expects a Qerminated C string. Queries are not allovi@devent data.

Objects that contain the state of vadhélfmodul e
a module has been instantiated before and is opangetond timdrom within a single

processan errorGC_ ERRRESOURCE IN USHas to be returned. A close on the module

will free the resource of the closed module and all underlying or depending child modules.

This is true as long as these calls are in the same process space (see below). Thus if a
Interface moduleas closed all attached Device, Data Stream and Buffer modules are also
closed.

6.1.4 Thread and Multiprocess Safety

If the platform supports threading, all functions must be thread safe to ensure data integrity
when a function is called from different threadsone proces<ertain restrictions apply for

all list functionslike TLUpdatelnterfaceList and IFUpdateDevicelList since

results are cached inside the module.

12 December 2013 Pageb3of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

If a platform supports independent processes the GenTL Producer implementatyon m
establish interprocess communicatidinimal requirement is thadther processes are not
allowed to use an open@&@gkvicemodule. It is recommended though that a GenTL Producer
implementation is multiprocess capable to the point where:

1 Access rights for the Modules are checked
An open Device module should be locked against multiple proagssaccess. In that
case an error should be returneéad access may be granted though.

1 Dataktate safety is ensured
Reference counting must be done so that if e.g. the System module of one process is
closed the resources of another process are not automatically freed.

71 Different processes can communicate with different devices
Each process shoule able to communicate with one or multiple devices. Also different
processes should be able to communicate with different devices.

6.1.5 Error Handling

Every function has as its return valueG&€ ERRORThis value indicates the status of the
operation. Functio® must give strong exception safety. With an exception not a language
dependent exception object is meant, but an execution error in the called function with a
return code other tha®C_ERR_SUCCES®No exception objects may be thrown of any
exported functin. Strong exception safety means:

71 Data validity is preserved
No data becomes corrupted or leaked.

1 State is unchanged
First the internal state must stay consistent and it must be as if the function encountering
the error was never called. Therefore thegativalues of a function are to be handled as if
being invalid if the function returns an error code.

This ensures that calling GenTL Consumers always can expect a known state in the GenTL
Producer implementation: either it is the desired state when adimall was successful or
it is the state the GenTL Producer implementation had before the call.

The following values are defined:
Table6-4: C interface error codes

Enumerator Value Description

GC_ERR_SUCCESS 0 Operation wasuccessful; no error
occurred.

GC_ERR_ERROR -1001 Unspecified runtime error.

GC_ERR_NOT_INITIALIZED -1002 Moduleor resourceanot initialized; e.g
GClnitLib ~ was not called

GC_ERR_NOT_IMPLEMENTED -1003 Requested operat not implemented
e.g. no Port functions on a Buffer
module.

GC_ERR_RESOURCE_IN_USE -1004 Requestedesourcas already inuse.

12 December 2013 Pageb4 of 142

GEN<I>CAM

7

Version 14 GenTL Standard

Enumerator Value

Description

GC_ERR_ACCESS_DENIED -1005

Requested operation is not allowed;
e.g. a remote device is opened by
another client.

GC_ERR_INVALID_HANDLE -1006

Given handle does not support the
operation; e.g. function call on wron
handle oNULL pointer.

GC_ERR_INVALID_ID -1007

ID could not be connected to a
resource; e.g. a device with the give
ID is currently not available.

GC_ERR_NO_DATA -1008

The function has no data to work on

GC_ERR_INVALID_PARAMETER -1009

One of the parameter given was not
valid or out of range

GC_ERR_IO -1010

Communication error has occurred;
for example a read or write operatio
to a remote device failed.

GC_ER_TIMEOUT -1011

An operationbs t
before it could be completed.

GC_ERR_ABORT -1012

An operation has been aborted befqg
it could be completed. For example
wait operation through
EventGetData has beeerminated
via a call toEventKill

GC_ERR_INVALID_BUFFER -1013

The GenTL Consumer has not
announced enough buffers to start t
acquisition in the currently active
acquisition mode.

GC_ERR_NOT_AVAILABLE -1014

Resource oinformation is not
available at a given timi@ a current
state

GC_ERR_INVALID_ADDRESS -1015

A given address is out of range or
invalid for internal reasons.

GC_ERR_BUFFER_TOO_SMALL -1016

A provided buffer is to small to
receive the expected amouwitdata.
This may affect acquisition buffers ir
the Data Stream module if the bufe
aresmaller than the expected paylog
size but also buffers passed to any
other function of the GenTL Produce
interface to retrieve information or
IDs.

GC_ERR_INVALID_INDEX -1017

A provided index referencing a
Producer internal object is out of
bounds.

GC_ERR_PARSING_CHUNK_DAT -1018

An error occurred parsing a buffer

12 December 2013 Pageb5 of 142

[]
GEN<I>CAM e

Version 14 GenTL Standard

Enumerator Value Description
containing chunk data.

GC_ERR_INVALID _VALUE -1019 A register write function was trying t
write an nvalid value.

GC_ERR_RESOURCE_EXHAUSTE -1020 A requested resource is exhausted.
This is a rather general error which
might for example refer to a limited
number of available handles being
available.

GC_ERROUT_OF MEMORY -1021 The systenmand/or other &rdware in
the system (Framegrabbean out of
memory

GC_ERR_CUSTOM_ID -10000 |Any error smaller or equal than

-10000 is implementation specific.
If a GenTL Consumer receives such
an error number it should react as if

would be a generic runtime err

To get a detailed descriptive text about the error reason c&iG@i@etLastError

function.

Some error codes might be returned by any function and are therefore notlgXjsiei in

the functi
- GC_ERR_ERROR
- GC_ERR_IO

- GC_ERR_RESOURCE_EXHAUSTED

GC_ERR_OUT_OF MEMORY

6.1.6 Software Interface Versions

tabléd Bhese ermorcadesare:d e

The software interface evolves over the individual versions of the GenTL specification. In
particular, between two versions tife interface, new functions (and corresponding data

structures) and enumerations might be introduced. In rare cases, existing functions or
commands might be conversely deprecateterface versions are indicated by a major
version number and a minor vere n

versionnumberand Oy 0

1 Major Version Numbers

number i n a
bei ngnumibee mi

nor ver si on

Different major version numbers indicate major additions to the interface and/or
breaking changes. This means for exanglemoval of functions or a complete new
feature set. The newer interface is therefore not backward compatible.

9 Minor Version Numbers

Changes in the minor version number of the software interface may indicate new
functionality and clarifications in the tegescribing the interface. If only the minor
version changes the interface stays backward compatible.

Changing feature names without functionl change is also allowed in minor releases.

12 December 2013

Pageb6 of 142

notati on

i X .

y

GEN<I>CAM Fie

Version 14 GenTL Standard

When developing a GenTL Consumer that should be compatible awttdest range of
GenTL Producer versions, special care might be required to consider these differences.

When using an enumeration unknown to the GenTL Producer, the function getting that value
as a parameter would return an appropriate error code. For exarhpte querying an
unknown info command, the GenTL Producer would re@@ ERR_NOT_IMPLEMENTED

When trying to use a GenTL interface function unknown tad@eaTL Producer, the function
implemenation will be simply missing in the GenTL Producer's binanytheofunctions that

are not universally available in all GenTL specification versions, the Consumer should check
their presence in th&enTL Producer's interface at load timeand if possible, consider a
suitable fallback behaviour f@enTLProducers nomplementing that function.

6.2 Used Data Types
To have a defined stack layout certain data types have a primitive data type as its base.

6.2.1.1 GC_ERROR
The return value of all functions is a 32 bit signed integer value.

6.2.1.2 Handles

All handles likeTL_HANDLEor POR_HANDLEarevoid* . The size is platform dependent
(e.g. 32 bit on 32 bit platforms)

6.2.1.3 Enumerations

All enumerations are of typenum. In order to allow implementation specific extensions all
enums areset to a specifi@2 bit integer value. On platforms/cpiters where this is not the
case a primitive data type with a matching size is to be used.

6.2.1.4 Buffers and C Strings

Buffers are normally typed a®id* if arbitrary data is accesseSbecialized buffers like C
stringsare by default ASCIl encoded aacthar * is usedunless reportedifferent through

the type information provided by the info functions (for exanipléetinfo). A char is
expected to have 8 bit On platforms/compilers where this is not the case a byte like
primitive data type must be used.

String encoding idy defaultASCIl (characters with numerical values up to and including
127)unless stated different througire TL_INFO_CHAR_ENCODINGommand A string as

an input value without a size parameter must dbem@inated. Strings with a size parameter
must include the terminating O.

6.2.1.5 Primitive Data Types

Thesize t type indicates that a buffer size is represented. This is a platform dependent
unsigned integer (e.g. 32 bit on 32 bit platforms).

12 December 2013 Pageb7 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

The ptrdiff_tis a sgned type whichndicates that its value relates to aithmetic operation
with a memory poi nt e isplatfars depdndeyt (ea. 3 hitforf 32 bit
platforms and 64Bit on 64Bit platforms).

The other functions use a notation defoiits base type and sizeint8 t stands for an
unsigned integer with the size of 8 bit#32 t is a signed integer with 32 bits size.

6.3 Function Declarations

6.3.1 Library Functions

6.3.1.1 GCCloseLib

| GC_ERROR GCCloseLib (void)

This function must be called after fionction of the GenTL library is needed anymore to
clean up the resources from B€InitLib function call.Each @l to GCCloseLib has to
be accompanied by a preceding calGtGInitLib .

GCGetLastError must not be called after the call of this function!

Returns
GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pages4.

6.3.1.2 GCGetInfo

GC_ERRR GCGetlInfo (TL_INFO_CMD iinfoCmd
INFO_DATATYPE * piType ,
void * pBuffer ,
size t* piSize)

Inquire information about a GenTL implementation withmgtantiatig a System module
The available information is limited since the TL is not initialized faten if this function
works on a librarywithout aninstantiated System modul&CinitLib must be called prior
calling this function.

If the provided buffer is too small to receive all information an error is returned.

Parameters
[in] iinfoCmd Information to be retrieved as definedlib_INFO_CMD
[out] piType Data type of th@Buffercontent as defined in the

TL_INFO_CMDandINFO_DATATYPE

12 December 2013 Pageb8of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

[in,out] pBuffer Pointer to a user allocated buffer to receive the requested
information. If this parameter NULL, piSizewill contain the
minimal size ofpBufferin bytes. If thaTypeis a string the
size includes the terminating 0.

[in,out] piSize pBufferequalNULL
out: minimal size opBufferin bytes to hold all information
pBufferunequalNULL
in: size of the providedBufferin bytes
out: number of bytes filled by the function

Returns
GC_ERR_SUCCESS Operation was successfualp error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib
GC_ERR_NOT_IMPLEMENTED SpecifiediinfoCmdis not implemented.

GC_ERR_INVALID PARAMETERParametersiSize and/or piType are invalid pointers
(NULL or ~0x0)

GC_ERR_BUFFER_TOO_SMALLpBufferis not NULL and the value ofpiSizeis too
small to receive the expected amount of data.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.3.1.3 GCGetlLastError

GC_ERROR GCGetlLastError (GC_ERROR* piErrorCode
char * sErrorText
size t* piSize)

Returns a readable text description of the last error occurred in théhiezed context.

If multiple threads are supported on a platform this function must store this information thread
local. In case an error occurs and after that several other function calls return without error the
last error value and description is retedrand the successful calls are ignored. If there has not
been any error in the given thread context since startup the function will return
GC_ERR_SUCCESSiIth *piErrorCode also set tadGC_ERR_SUCCES&SdsErrorText

cont ai ni n glndas¥@CG&Lastorron .itself generates an error it will return the
according error code but it will not store the error internally so that succeeding calls to
GCGetLastError will still be able to report the stored error code.

Parameters
[out] piErrorCode Error code of théast error.
[in,out] sErrorText Pointer to a user allocated C string buffer to receive the last

error text. If this parameter BULL, piSizewill contain the

12 December 2013 Pageb9 of 142

GEN<i>CAM i

Version 14 GenTL Standard

needed size fErrorTextin bytes. The size includes the
terminating O.

[in,out] piSize pBufferequalNULL
out: minimal size opBufferin bytes to hold all information
pBufferunequalNULL
in: size of the providedBufferin bytes
out: number of bytes filled by the function

Returns
GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_EHRR_NOT _INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID PARAMETERParameterspiSize and/or piErrorCode are invalid
pointers (NULL or ~0x0)

GC_ERR_BUFFER_TOO_SMALLSsErrorTextis not NULL and the value ofpiSizeis too
small to receive the expected amount of data.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.3.1.4 GClInitLib

GC_ERROR GClnitLib (void)

This function must be called prior to any other function call to allow global initialization of
the GenTL Producer driver. This function is necessary since automated initialization
functionality like withinDIIMain on MS Windows platforms is very limitedultiple calls

to GClnitLib without accompanied callto GCCloseLib will return an error
GC_ERR_RESOURCE_IN_USE

Returns
GC_ERR_SUCCESS Operation was sucessful; no error occurred.
GC_ERR_RESOURCE_IN_USE GCinitLib already called without accompanied call

to GCCloseLib

Error cases not covered in the list above may return error codes acdordingpter6.1.5
Error Handlingon pageb4.

12 December 2013 Page60 of 142

° "”b(-
GEN<I>CAM e
Version 14 GenTL Standard
6.3.2 System Functions
6.3.2.1 TLClose
GC_ERROR TLClose (TL_HANDLE hSystem)

Closes the System module associated with the din8ystenhardle. This closes the whole
GenTL Producer driver and frees all resources. CalG@i€loseLib function afterwards if
the library is not needed anymore.

Parameters

[in] hSystem System module handle to close.

Returns

GC_ERR_8CCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handlehSystemis invdid (NULL) or does not
reference an open System module retrievedutiitca
call toTLOpen.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.3.2.2 TLGetInfo

GC_ERROR TLGetInfo (TL_HANDLE hSystem ,
TL_INFO_CMD iinfoCmd
INFO_DATATYPE * piType |,
void * pBuffer ,
size t* piSize)

Inquire information about the System module as defin@d.ifNFO_CMD

Parameters
[in] hSystem System module to work on.
[in] ilInfoCmd Information to be retrieved as definedlih INFO CMD
[out] piType Data type of th@Buffercontent as defined in the
TL_INFO CMDandINFO DATATYPE
[in,out] pBuffer Pointer to a user allocated buffer to receive the requested

information. If this parameter NULL, piSizewill contain the
minimal size ofpBufferin bytes. If thepiTypeis a string the
size includes the terminating 0.

[in,out] piSize pBufferequalNULL
out: minimal size opBufferin bytes to hold all information

12 December 2013 Page6lof 142

GEN<I>CAM Fie

Version 14 GenTL Standard

pBufferunequalNULL

in: size of the providedBufferin bytes

out: number of bytes filled by the function
Returns

GC_ERR_SUCCESS
GC_ERR_NOT_INITIALIZED

Operation was successful; no eroocurred.

No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handlehSystemis invdid (NULL) or does not

reference an open System module retrieved through a
call toTLOpen.

GC_ERR_NOT_IMPLEMENTED SpecifiediinfoCmdis not implemented.
GC_ERR_INVALID_PARAMETERParameter9iSize and/or piType are invalid pointers

(NULL or ~0x0)

GC_ERR_BUFFER_TOO_SMALLpBufferis not NULL and the value ofpiSizeis too

GC_ERR_NOT_AVAILABLE

small to receivehe expected amount of data.

The requestis implemented but the requested
informationis currently not available for any reason.

Error cases not covered in the list above may return error codes according to 6Hapter

Error Handlingon pages4.

6.3.2.3 TLGetInterfacelD

GC_ERROR TLGetlInterfacelD (TL_HANDLE hSystem ,
uint32_t iindex
char * slfacelD ,
size t* piSize)

Queries the unique ID of the
the TLUpdatelnterfaceList

interfaatilndexin the internal interface list. Prior to this call
function must be called. The list content will not change

until the next call of the updat
This function is nothread safe

Parameters
[in] hSystem
[in] ilndex

[in,out] slfacelD

[in,out] piSize

e function.
since it relies on an internal cache.

System module to work on.

Zero-based index of the interface on this system.

Pointer to a user allocated C string buffer to receive the
Interface modwd ID at the givenindex If this parameter is
NULL, piSizewill contain the needed size sifacelDin
bytes. The size includes the terminating O.
sifacelDequalNULL

out: minimal size o§lfacelDin bytes to hold all information

12 December 2013 Page62 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

slfacelDunequalNULL:
in: size of the providedifacelDin bytes
out: number of bytes filled by the function

Returns
GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT _INITIALIZED No preceding call t&ClnitLib .

GC_ERR_INVALID_HANDLE The handlehSystemis invdid (NULL) or does not
reference an open System module retrieved through a
call toTLOpen.

GC_ERR_INVALID_INDEX ilndexis greater than theumber of available Interface
modules - 1 retrieved through a call to
TLGetNuminterfaces

GC_ERR_INVALID PARAMETERParametepiSizeis an invalid pointer (NULL or ~0x0)

GC_ERR_BUFFER_TOO_SMALLslfacelDis not NULL and the value ofpiSizeis too
small b receive the expected amount of data.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.3.2.4 TLGetInterfacelnfo

GC_ERROR TLGetlInterfacelnfo (TL_HANDLE hSystem ,
const char * slfacelD ,
INTERFACE_INFO_CMDilnfoCmd ,
INFO_DATATYPE * piType ,
void * pBuffer ,
size t* piSize)

Inquire information about an interface on the given System mdusystenas defined in
INTERFACE INFO CMUDOvithout opening the interface.

Parameters

[in] hSystem System module to work on.

[in] slfacelD Unique ID of the interface to inquire information from.

[in] iinfoCmd Information to be retrieved akefined in
INTERFACE_INFO_CMD

[out] piType Data type of th@Buffercontent as defined in the
INTERFACE INFO CMRNdINFO DATATYPE

[in,out] pBuffer Pointer to a user allocated buffer to receive the requested

information. If this parameter MULL, piSizewill contain the

12 December 2013 Page63of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

minimal size ofpBufferin bytes. If thepiTypeis a string the
size includes the terminating 0.

[in,out] piSize pBuffe equalNULL
out: minimal size opBufferin bytes to hold all information
pBufferunequalNULL
in: size of the providedBufferin bytes
out: number of bytes filled by the function

Returns
GC_ERR_SUCCESS Operation was successful; no error occurred.

GC ERR_NOT _INITIALIZED No preceding call t&CinitLib .

GC_ERR_INVALID_HANDLE The handlehSystemis invdid (NULL) or does not
reference an open System module retrieved through a
call toTLOpen.

GC_HRR_NOT_IMPLEMENTED SpecifiediinfoCmdis not implemented.

GC_ERR_INVALID PARAMETERParametersiSize and/or piType are invalid pointers
(NULL or ~0x0).

GC_ERR_BUFFER_TOO_SMALLpBufferis not NULL and the value ofpiSizeis too
small to receive the expect amount of data.

GC_ERR_INVALID_ID The GenTL Producer is unable to interpret the provided
ID string slfacelD or is not able tomatch it to an
existing Interface.

GC_ERR_NOT_AVAILABLE The requestis implemented but the requested
informationis currentlynot available for any reason.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pages4.

6.3.2.5 TLGetNumInterfaces

GC_ERROR TLGetNuminterfaces (TL_HANDLE hSystem ,
uint32_t* piNumlifaces)

Queries the number of available interfaces on this System module. Prior to this call the
TLUpdatelnterfaceList function must be called.hE list content will not change until
the next call of the update function.

This function is not thread safe since it relies on an internal cache.

Parameters
[in] hSystem System module to work on.
[out] piNumlfaces Number of interfaces on this System rated

12 December 2013 Page64 of 142

GEN<i>CAM i

Version 14 GenTL Standard
Returns
GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT _INITIALIZED No preceding call t&CinitLib .

GC_ERR_INVALID_HANDLE Either thehandlehSystermhas an invalid value or the
handle does not bamhg to a previously opened TL
module through a call t6LOpen.

GC_ERR_INVALID_PARAMETERParameter piNuminterfaces is an invalid pointer
(NULL or ~0x0).

Error cases not covered in the list above may return error codes accordingpter6.1.5
Error Handlingon pageb4.

6.3.2.6 TLOpen

\GC_ERROR TLOpen (TL_HANDLE * phSystem)

Opens the System module and puts the instance iphBgstenhandle. This aticates all
system wide resources. Call tB€InitLib function before this function. A System module
can only be opened once.

Parameters

[out] phSystem System module handle of the newly opened syslieis.
recommended to itialize *phSystento
GENTL_INVALID_HANDLEbefore callingTLOpen to
indicate an invalid handle.

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

GC_ER_RESOURCE_IN_USE The TL module has already been instantiated through a
previous call tol LOpen.

GC_ERR_INVALID_PARAMETERParametemphSystemis an invalid pointer (NULL or
~0x0).

GC_ERR_ACCESS DENIED The accesto the requeste@ystem modules denied.
This may be because it is already opened by another
Process but it might have other reasons as well.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

12 December 2013 Page65 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

6.3.2.7 TLOpeninterface

GC_ERROR TLOpenInterface (TL_HANDLE hSystem ,
const char * slfacelD ,
IF_ HANDLE * phiface)

Opens the giverlfacelDon the giverhSystem

Any subsequent call tdLOpeninterface with an slfacelD which has already been
opened will return an err@d8C_ERR_RESOURCE_IN_USE

The interface ID need not match the one returned ffi@etinterfacelD . As long as
the GenTL Producer know®W to interpret that ID it will return a valid handle. For example,
if in a specific implementation the interface has a-defined name, this function will return
a valid handle as long as the provided name refers to an internally known interface.

Parameters

[in] hSystem System module to work on.

[in] slfacelD Unique interface ID to open as adrminated C string.

[out] phiface Interface handle of the newly created interfdces
recommended to initializephifaceto
GENTL_INVALID_HANDLEbefore callng
TLOpeninterface to indicate an invalid handle.

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib .

GC_ERR_RESOURCE_IN_USE The Interface module hasrehdy been instantiated
through a previous call 6L Openlinterface

GC_ERR_INVALID_HANDLE The handlehSystemis invdid (NULL) or does not
reference an open System module retrieved through a
call toTLOpen.

GC_ERR_INVALID_ID The GenTL Producer is unable to interpret the provided
ID string slfacelD or is not ableto match it to an
existing Interface.

GC_ERR_INVALID_PARAMETERParametey phSystem and/or slfacelD are invalid
pointers (NULL or ~0x0).

GC_ERR_ACCESS_DENIED The accesto the requestednterfaceis denied.This
may be because it is already opened by another Process
but it might have other reasons as well.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pages4.

12 December 2013 Page66 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

6.3.2.8 TLUpdatelnterfaceList

GC_ERROR TLUpdatelnterfaceList (TL_HANDLE hSystem ,
bool8 t* pbChanged,
uinté4 t iTimeout)

Updates the internal list of available interfacHsis may change the connection between a list
index and an interface 10t is recommended to callLUpdatelnterfaceList after
reconfiguration of the System module to reflect possible changes.

A call to this function has implications on the thread saféty o
- TLGetNuminterfaces
- TLGetlInterfacelD

Parameters

[in] hSystem System module to work on.

[out] pbChanged Containgrue if the internal list was changed afadse
otherwise. Ifset toNULL nothing is written to this parameter.

[in] iTimeout Timeout in ms. If set t6GENTL_INFINITE the timeout is
infinite and the function Wl only return after the operation is
completel. In any case the GenTL Producer must make sure
that this opeation is completed in a reasonable amount of
time depending on the underlying technology. Please be
aware that there is no defined way of terminating such an
update operation. On the other hand it is the GenTL
Consumer 6s responsonwithhi ty to ca
reasonable timeout.

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handlehSystemis invdid (NULL) or does not
reference an open System module retrieved through a
call toTLOpen.

GC_ERR_INVALID_PARAMETERParametepbChangeds an invalid pointer (NULL or

~0x0).

GC_ERR_TIMEOUT The specifiedTimeoutexpired before the Producer was
ablet o compl etely wupdate the |
list staysvalid.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

12 December 2013 Page67 of 142

° "”b(-
GEN<I>CAM e
Version 14 GenTL Standard
6.3.3 Interface Functions
6.3.3.1 IFClose
GC_ERROR IFClose (IF_HANDLE hiface)

Closes the Interface module associated with the diffacehandle. This closes all dependent
Device modules and frees all interface related resources.

Parameters

[in] hSystem System module handle to close.

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib .

GC_ERR_INVALID_HANDLE The handlehiface is invdid (NULL) or does not
reference an open Interface module retrieved through a
call toTLOpenInterface

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.3.3.2 IFGetInfo

GC_ERROR IFGetinfo (IF_HANDLE hiface ,
INTERFACE_INFO_CMDilnfoCmd ,
INFO_DATATYPE * piType ,
void * pBuffer ,
size t* piSize)

Inquire information about the Interface thie as defined IINTERFACE_INFO_CMD

Parameters

[in] hiface Interface module to work on.

[in] iinfoCmd Information to be retrieved as defined in
INTERFACE_INFO_CMD

[out] piType Data type of th@Buffercontent as defined in the
INTERFACE_INFO_CMandl NFO_DATATYPE

[in,out] pBuffer Pointer to a user allocated buffer to receive the requested

information. If this parameter NULL, piSizewill contain the
minimal size ofpBufferin bytes. If thepiTypeis a string the
size includes the terminating O.

[in,out] piSize pBufferequalNULL
out: minimal size opBufferin bytes to hold all information

12 December 2013 Page68 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

pBufferunequalNULL
in: size of the providedBufferin bytes
out: number of bytes filled by the function

Returns
GC_ERR_SUCCESS Operation was successful; noe occurred.

GC_ERR_NOT _INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handlehiface is invdid (NULL) or does not
reference an open Interface module retrieved through a
call to TLOpenlnterface

GC_ERR_NOT_IMPLEMENTED SpecifiediinfoCmdis not implemented.

GC_ERR_INVALID_PARAMETERParameter9iSize and/or piType are invalid pointers
(NULL or ~0x0)

GC_ERR_BUFFER_TOO_SMALLpBufferis not NULL and the value ofpiSize is too
small to receive the expected amount of data.

GC_ERR_NOT_AVAILABLE The requestis implemented but the requested
informationis currently not available for any reason.

Error cases not covered in the list above may return error codes accordingpter6.1.5
Error Handlingon pages4.

6.3.3.3 IFGetDevicelD

GC_ERROR IFGetDevicelD (IF_HANDLE hiface ,
uint32_t iindex
char * sDevicelD ,
size t* piSize)

Queries the uniqud of the device atindexin the internal device list. Prior to this call the
IFUpdateDevicel.ist function must be called. The list content will not change until the
next call of the update function.

This functionis not thread safe since it relies on an internal cache.

Parameters

[in] hiface Interface module to work on.

[in] ilndex Zero-based index of the device on this interface.

[in,out] sDevicelD Pointer to a user allocated C string buffer to receive the

Devicemodule ID at the giverindex If this parameter is
NULL, piSizewill contain the needed size sbevicelDin
bytes. The size includes the terminating O.

12 December 2013 Page69 of 142

GEN<I>CAM

7

Version 14

GenTL Standard

[in,out] piSize

pBufferequalNULL

out: minimal size opBufferin bytes to hold all information
pBufer unequalNULL

in: size of the providedBufferin bytes

out: number of bytes filled by the function

Returns
GC_ERR_SUCCESS

GC_ERR_NOT_INITIALIZED
GC_ERR_INVALID_HANDLE

GC_ERR_INVALID_INDEX

Operation was successful; no error occurred.
No preceding call t&CinitL ib .

The handlehiface is invdid (NULL) or does not
reference an open Interface module retrieved through a
call toTLOpenInterface

iindex is greater than the number of aahile Device
modules - 1 retrieved through a call to
IFGetNumDevices

GC_ERR_INVALID PARAMETERParametepiSizeis an invalid pointer (NULL or ~0x0).
GC_ERR_BUFFER_TOO_SMALLslfacelDis not NULL and the value ofpiSizeis too

small to receive the expected amount of data.

Error cases not covered in the list above may return error codes according to 6Hapter

Error Handlingon pageb4.

6.3.3.4 IFGetDevicelnfo

GC_ERROR IFGetDevicelnfo

(IF_HANDLE hiface
const char * sDevicelD ,
DEVICE_INFO_CMDilnfoCmd
INFO_DATATYPE * piType |,
void * pBuffer ,
size_t* piSize)

Inquire information about a device on the given Interface modifigce as definedin
DEVICE_INFO_CMDwithout opening the device.

Parameters

[in] hiface

[in] sDevicelD
[in] ilInfoCmd

Interface module to work on.
Unique ID of the device to inquire information about.
Information to be retrieved as defined in

DEVICE_INFO_CMD

[out] piType

Data type of th@Buffercontent as defined in the

DEVICE_INFO_CMDandINFO_DATATYPE

12 December 2013

Pager0of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

[in,out] pBuffer Pointer to a user allocated buffer to receive the requested
information. If this parameter NULL, piSizewill contain the
minimal size ofpBufferin bytes. If thepiTypeis a string the
size includes the terminating 0.

[in,out] piSize pBufferequalNULL
out: minimal size opBufferin bytes to hold all information
pBufferunequalNULL
in: size of the providedBufferin bytes
out: number of bytes filg by the function

Returns
GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT _INITIALIZED No preceding call t&CinitLib .

GC_ERR_INVALID_HANDLE The handlehlface is invdid (NULL) or does not
reference ampen Interface module retrieved through a
call to TLOpenlnterface

GC_ERR_INVALID_ID The GenTL Producer is unable to interpret the provided
ID string sDevicelD or is unable tomatch it to an
existingDevice

GC_ERR_BT_IMPLEMENTED SpecifiediinfoCmdis not implemented.

GC_ERR_INVALID_PARAMETERParameterpiSizeand/or piType and/orsDevicelDare
invalid pointers (NULL or ~0xQ)

GC_ERR_BUFFER_TOO_SMALLpBufferis not NULL and the value ofpiSizeis too
small to receie the expected amount of data.

GC_ERR_NOT_AVAILABLE The requestis implemented but the requested
informationis currently not available for any reason.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.3.3.5 IFGetNumDevices

GC_ERROR IFGetNumbDevices (IF_HANDLE hiface ,
uint32_t* piNumDevices)

Queries the number of available devices on this Interface moRul&. to this call the
IFUpdateDevicelList function must be called. The list content will not change until the
next call of the update function.

This function is not thread safe since it relies on an internal cache

Parameters

12 December 2013 Pagerlof 142

GEN<I>CAM Fie

Version 14 GenTL Standard

[in] hiface Interface module to work on.

[out] piNumDevices Number of devices on this Interface module.
Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT _INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handlehiface is invdid (NULL) or does not
reference an open Interface module retrieved through a
call to TLOpenlnterface

GC_ERR_INVALID_PARAMETERParametepiNumDevicess an invalid pointer (NULL
or ~0x0).

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.3.3.6 IFOpenDevice

GC_ERROR IFOpenDevice (IF_HANDLE hiface
const char * sDevicelD ,
DEVICE_ACCESS_FLAGSOpenFlags
DEV_HANDLE * phDevice)

Opens the giveaDevicelDwith the givenOpenFlagson the giverhiface

Any subsequent call th-Ope nDevice with ansDevicelDwhich has already been opened
will return an erroGC_ERR_RESOURCE_IN_USE

The device ID need not match the one returned flie@etDevicelD . As long as the
GenTL Producer knows how to interpteait ID it will return a valid handle. For example, if
in a specific implementation the device has a-defined name, this function will return a
valid handle as long as the provided name refers to an internally known device.

Parameters

[in] hiface Interface module to work on.

[in] sDevicelD Unique device ID to open as a€rminated C string.

[in] iOpenFlags Configures the open process as defined in the
DEVICE_ACCESS_FLAGS

[out] phDevice Device handle of the newly created Device modilis.
recommaded to initialize phDeviceto
GENTL_INVALID_HANDLEbefore calling
IFOpenDevice to indicate an invalid handle.

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

12 December 2013 Pager2of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

GC_ERR_NOT_INITIALIZED No preceding calio GClInitLib .

GC_ERR_INVALID_HANDLE The handlehiface is invdid (NULL) or does not
reference an open Interface module retrieved through a
call toTLOpenlnterface

GC_ERR_INVALID_ID TheGenTL Producer is unable to interpret the provided
ID string sDevicelDor is not ableto match it to an
existingDevice

GC_ERR_RESOURCE_IN_USE The Device module has already been instantiated
through a previous call toFOpenDevice .

GC_ERR_INVALID_PARAMETERParameterssDevicelD and/or phDevice are invalid
pointers (NULL or ~0x0) oifOpenFlagscontains a non
valid/unknowncombination of flags.

GC_ERR_NOT_IMPLEMENTED iOpenFlagscontains flags which are not implemented
by this GenTL Producer.

GC_ERR_ACCESS _DENIED The accesto the requested devitg denied.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon paye 54.

6.3.3.7 IFUpdateDeviceList

GC_ERROR IFUpdateDeviceList (IF_HANDLE hiface,
bool8 t* pbChanged,
uinté4_t iTimeout)

Updates the internal list of available devices. This may change the connection between a list
index and a deve ID. It is recommended to calFUpdateDevicelList regularly from
time to time and after reconfiguration of the Interface module to reflect possible changes.

A call to this function has implications on the thread safety of
- IFGetNumDevices
- IFGetDevicelD

Parameters

[in] hiface Interface module to work on.

[out] pbChanged Containgrue if the internal list was changed afalse
otherwise. If set ttNULL nothing is written to this pameter.

[in] iTimeout Timeout in mslf set toGENTL_INFINITE the timeout is

infinite and the function W only return if the operation is
complete. In any case the GenTL Producer must make sure

12 December 2013 Pager3of 142

GEN<i>CAM i

Version 14 GenTL Standard

that this operation is completed in a reasonable amount of

time depending on the underlying technology. Please be

aware that there is no defined way of terminating such an

update operation. On the other hand it is the GenTL
Consumer 6s responsibility to ca
reasonable timeout.

Returns
GC_ERR_8CCESS Operation was successful; no error occurred.

GC_ERR_NOT _INITIALIZED No preceding call t&CinitLib .

GC_ERR_INVALID_HANDLE The handlehlface is invdid (NULL) or does not
reference an open Interface module retrievedugh a
call to TLOpenlnterface

GC_ERR_INVALID PARAMETERParametepbChangeds an invalid pointer (NULL or

~0x0).

GC_ERR_TIMEOUT The specifiedTimeoutexpired before the Producer was
able to completely update the 5 t . I n this cas
list staysvalid.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pages4.

6.3.3.8 IFGetParentTL

GC_ERROR IFGetParentTL (IF_HANDLE hiface,
TL_HANDLE * phSystem)

Retrieve a handle to the parent ifodule.

Parameters

[in] hiface Interface module to work on.

[out] phSystem Handle to the parent System module

Returns

GC_ERR_SUCCESS Operationwas successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handlehlface is invdid (NULL) or does not
reference an open Interface module retrieved through a
call toTLOpenlnterface

GC_ERR_INVALID_PARAMETERParameterphSystemis an invalid pointer (NULL or
~0x0).

12 December 2013 Pager4 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pages4.

6.3.4 Device Functions

6.3.4.1 DevClose

GC_ERROR DevClose (DEV_HANDLE hDevice)

Closes the Device module associated with the ghi2evicehandle. This frees all resources
of the Devce module and closes all dependent Data Stream module instamxeaClose is
called with a handle returned from a calllevGetPort a GC_ERR_INVALID_HANDLE
is to be returned.

Parameters

[in] hDevice Device module handl® close.

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib .

GC_ERR_INVALID_HANDLE The handlehDevice is invdid (NULL) or does not
reference an opeimterface module retrieved through a
call tolFOpenDevice

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.3.4.2 DevGetInfo

GC_ERROR DevGetinfo (DEV_HANDLE hDevice ,
DEVICE_INFO_CMDilnfoCmd
INFO_DATATYPE * piType |,
void * pBuffer ,
size t* piSize)

Inquire information about the Device module as defindd&EVICE_INFO_CMD

Parameters

[in] hDevice Device module to work on.

[in] ilInfoCmd Information to be retrieved as defined in
DEVICE_INFO_CMD

[out] piType Data type of th@Buffercontent as defined in the

DEVICE_INFO_CMDandINFO_DATATYPE

12 December 2013 Pager5of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

[in,out] pBuffer Pointer to a usaallocated buffer to receive the requested
information. If this parameter NULL, piSizewill contain the
minimal size ofpBufferin bytes. If thepiTypeis a string the
size includes the terminating 0.

[in,out] piSize pBufferequalNULL
out: minimal siz of pBufferin bytes to hold all information
pBufferunequalNULL
in: size of the providedBufferin bytes
out: number of bytes filled by the function

Returns
GC_ERR_SUCCESS Operation was successful; no error occurred.
GC_ERR_NOT_INITIALIZED No precedag call toGClnitLib .

GC_ERR_INVALID_HANDLE The handlehDevice is invdid (NULL) or does not
reference an open Device module retrieved through a
call tolFOpenDevice

GC_ERR_NOT_IMPLEMENTED SpecifiediinfoCmdis not implemented.

GC_ERR_INVALID PARAMETERParametersiSize and/or piType are invalid pointers
(NULL or ~0x0).

GC_ERR_BUFFER_TOO_SMALLpBufferis not NULL and the value ofpiSizeis too
small to receive the expected amount of data.

GC_ERR_NOT_AVAILABLE The requestis implemented but the requested
informationis currently not available for any reason.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.3.4.3 DevGetDataStreamID

GC_ERROR DevGetDataStreamID (DEV_HANDLE hDevice ,
uint32_t iindex
char * sDataStreamID
size t* piSize)

Queries the unique ID of the data streantratexin the internal data stream list.

For GenTL Producers which do not provide a data stream the number of available data
streams is zero. Calls tDevGetDataStreamID or DevOpenDataStr eam will fail.
Nevertheless a GenTL Producer must export all functions of the public interface

Parameters
[in] hDevice Device module to work on.

12 December 2013 Pager6 of 142

GEN<i>CAM i

Version 14 GenTL Standard
[in] ilndex Zero-based index of the data stream on this device.
[in,out] sDataStreamID Pointer to a user albated C string buffer to receive the

Interface module ID at the giveimdex If this parameter is
NULL, piSizewill contain the needed size sbataStreamID
in bytes. The size includes the terminating 0.

[in,out] piSize pBufferequalNULL
out: minimal sze ofpBufferin bytes to hold all information
pBufferunequalNULL
in: size of the providedBufferin bytes
out: number of bytes filled by the function

Returns
GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No precethg call toGClnitLib .

GC_ERR_INVALID_HANDLE The handlehDevice is invdid (NULL) or does not
reference an open Device module retrieved through a
call tolFOpenDevice

GC_ERR_NOT_IMPLEMENDE The Producer does not implement streamargthe
remote device does not provide a stream.
DevGetNumDataStreams reports zero.

GC_ERR_RESOURCE_IN_USE The stream has already been opened in this process.

GC_ERR_INVAID_INDEX iindex is greater than the number of available Data
Stream modules- 1 retrieved through a call to
DevGetNumDataStreams .

GC_ERR_INVALID_PARAMETERParametepiSizeis an invalid pointer (NULL or ~0xO0).

GC ERR_BUFFER_TOO_SMALL slfacelDis not NULL and the value ofpiSizeis too
small to receive the expected amount of data.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.3.4.4 DevGetNumDataStreams

GC_ERROR DevGetNumbDataStreams (DEV_HANDLE hDevice ,
uint32_t* piNumDataStreams)

Queries the number of available data streams on this Device module.

For GenTL Prducers which do not provide a data stream the number of available data
streams is zero. Calls idevGetDataStreamID or DevOpenDataStream will fail with
GC_ERR_NOT_IMPLEMENTERevertheless a GenTL Producer must export all functions
of the public interface

12 December 2013 Pager7of 142

GEN<i>CAM i

Version 14 GenTL Standard
Parameters
[in] hDevice Device module to work on.

[out] piNumDataStreams Number of data stream on this Device module.

Returns
GC_ERR_SUCCESS Operation was successful; noaroccurred.

GC_ERR_NOT _INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handlehDevice is invdid (NULL) or does not
reference an open Device module retrieved through a
call tolFOpenDevice

GC_ERR_INVALID_PARAMETERParameterpiNumbDataStreamds an invalid pointer
(NULL or ~0x0).

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.3.4.5 DevGetPort

GC_ERROR DevGetPort (DEV_HANDLE hDevice ,
PORT_HANDLE phRemoteDev)

Retrieves the port handle for the associated remote device.

This function does not return the handle for thet Ronctions for the Device module but for
the physical remote device.

The phRemoteDewandle must not be closed explicitly. This is done automatically when
DevClose is called on this Device module.

The remote device Porahdle is no valid source for Events. Therefore it must not be used to
register Events througBCRegisterEvent

Parameters

[in] hDevice Device module to work on.

[out] phRemoteDev Port handle for the remote devideis recommended to
initialize *phRemoteDetw GENTL_INVALID HANDLE
before callingDevGetPort to indicate an invalid handle.

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No precethg call toGClnitLib .

GC_ERR_INVALID_HANDLE The handlehDevice is invdid (NULL) or does not
reference an open Device module retrieved through a
call tolFOpenDevice

12 December 2013 Pager8of 142

GEN<i>CAM i

Version 14 GenTL Standard

GC_ERR_INVALID _PARAMEER ParametephRemoteDevs an invalid pointer (NULL
or ~0x0).

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pages4.

6.3.4.6 DevOpenDataStream

GC_ERROR DevOpenDataStream (DEV_HANDLE hDevice ,
const char * sDataStreamID
DS _HANDLE * phDataStream)

Opens the giveeDataStreamIDon the giverhDevice

Any subsequent call tBevOpenDataStream with ansDataStreamlIDwvhich has already
been opened will return an er@C_ERR_RESOURCE_IN_USE

The Data Stream ID need not match the one returned DewetDataStreamID . As

long as the GenTL Prodecknows how to interpret that ID it will return a valid handle. For
example, if in a specific implementation the data stream has a user defined name, this
function will return a valid handle as long as the provided name refers to an internally known
datastream.

For GenTL Producers which do not provide a data stream the number of available data
streams is zero. Calls tDevGetDataStreamID or DevOpenDataStream will fail.
Neverheless a GenTL Producer must export all functions of the public interface

Parameters

[in] hDevice Device module to work on

[in] sDataStreamID Unique data stream ID to open as-gfininated C string.

[out] phDataStream Data Stream module handle of thevhecreated streanit is
recommended to initializeghDataStreanto
GENTL_INVALID_ HANDLEbefore calling
DevOpenDataStream to indicate an invalid handle.

Returns

GC_ERR_SUCCESS Operation was successful; no erroraeced.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib .

GC_ERR_INVALID_HANDLE The handlehDevice is invdid (NULL) or does not
reference an open Device module retrieved through a
call tolFOpenDevice

GC_ERR_RESOURCE_IN_USE The Data Stream module has already been instantiated
through a previous call ibevOpenDataStream .

12 December 2013 Pager9of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

GC_ERR_INVALID_ID The GenTL Producer is unable to interpret the provided
ID stringsDataStreanD oris not ablgo match it to an
existingData Stream

GC_ERR_INVALID_PARAMETERParametey phDataStream and/or sDataStream are
invalid pointers (NULL or ~0x0).

GC_ERR_ACCESS _DENIED The acces to the requesteddata Stream modulés
denied. This may be because it is already opened by
another Process but it might have other reasons as well.

GC_ERR_NOT_AVAILABLE The sDataStreamIDof the stream is generally valid but
the stream is not available.

Error cases not covered in the list abovaymeturn error codes according to chaydr.5
Error Handlingon pageb4.

6.3.4.7 DevGetParentlF

GC_ERROR DevGetParentlF (DEV_HANDLE hDevice,
IF_HANDLE * phiface)

Retrieve a hndle to the parent Interface module.

Parameters

[in] hDevice Device module to work on.

[out] phiface Handle to the parent Interface module .

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT _INITIALIZED No preceding call t&CinitLib .

GC_ERR_INVALID_HANDLE The handlehDevice is invdid (NULL) or does not
reference an open Device module retrieved through a
call tolFOpenDevice

GC_ERR_INVALID_PARAMETERParamete phiface is an invalid pointer (NULL or
~0x0).

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

12 December 2013 PageB80of 142

° "”b(-
GEN<I>CAM o
Version 14 GenTL Standard
6.3.5 Data Stream Functions
6.3.5.1 DSAllocAndAnnounce
GC_ERROR DSAllocAndAnnounceBuffer (DS_HANDLE hDataStream ,
size_t IBufferSize ,
void * pPrivate
BUFFER_HANDLE *phBuffer)

This function allocates the memory for a single buffer and announces this buffer to the Data
Stream associated with theDataStreamhandle and returns #&Buffer handle which
references that single buffer until the buffer is revoked. This will allocate internal resources
which will be freed upon a call ©SRevokeBuffer

Announcing a buffer to a data stream does not mean that this buffer will be automatically
gueued for acquisition. This is done through a separate da8@ueueBuffer .

The memory referenced in this buffer rhustay valid until a buffer is revoked with
DSRevokeBuffer

Every call of this functiorshouldbe matched with a call @SRevokeBuffer even though
the resouces are alfeed wherthe module is closed

Refer to chaptes.2.1in order to determimthe right buffer size.

Parameters

[in] hDataStream Data Stream module to work on.

[in] iBufferSize Size of the buffer in bytes.

[in] pPrivate Pointer to privag data which will be passed to the GenTL
Consumer oiNew Buffer eventsThis parameter may be
NULL.

[out] phBuffer Buffer module handle of the newly announced buttes
recommended to initializeghBufferto
GENTL_INVALID_HANDLEbefore calling
DSAlloc AndAnnounceBuffer to indicate an invalid
handle.

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handlhDataStreanis invdid (NULL) or does not
reference an open Data Stream module retrieved
through a call tdbevOpenDataStream .

GC_ERR_INVALID_PARAMETERParameterphBuffer is an invalid pointer (NULL or
~0x0).

12 December 2013 PageB81of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

Error cases not covered the list above may return error codes according to ch&pieh
Error Handlingon pageb4.

6.3.5.2 DSAnnounceBuffer

GC_ERROR DSAnnounceBuffer (DS_HANDLE hDataStream ,
void * pBuffer ,
size t iISize
void * pPrivate
BUFFER_HANDLE * phBuffer)

This announces a GenTL Consumer allocated memory to the Data Stream associated with the
hDataStreanhandle and returnskBufferhandle which references that single buffer until the
buffer is revoked. This will allocate internal resources which will be freed upon a call to
DSRevokeBuffer

Announcing a buffer to a data stream does not mean that this buffer will be automatically
gueued for acquisition. This tone through a separate cali8QueueBuffer .

The memory referenced ipBuffer must stay valid until the buffer is revoked with
DSRevokeBuffer . Every call of this function must benatched with a call of
DSRevokeBuffer

A buffer can only be announced once to a given stream. If a GenTL Consumer tries to
announce an already announced buffer the function will return the error
GC_ERR_RESOURCE_IN_USE buffer may additionally be announced to one or more
other data stream(s) which will then result in one or more additional hamtikesConsumer
needs to take care about synchronisation between these streams.

Refer tochapters.2.1in order todetermire the right buffer size.

Parameters

[in] hDataStream Data Stream module to work on.

[in] pBuffer Pointer to buffer memory to announce.

[in] iSize Size of thepBufferin bytes.

[in] pPrivate Pointer to private data which will begsed to the GenTL
Consumer oiNew Buffer events.

[out] phBuffer Buffer module handle of the newly announced buttes
recommended to initializephBufferto
GENTL_INVALID_HANDLEbefore calling
DSAnnounceBuffer toindicate an invalid handle.

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

12 December 2013 PageB2 of 142

GEN<i>CAM i

Version 14 GenTL Standard

GC_ERR_INVALID_HANDLE The handlédhDataStreanis invdid (NULL) or does ot
reference an open Data Stream module retrieved
through a call tddevOpenDataStream .

GC_ERR_INVALID _PARAMETERParameteypBufferand/orphBufferare invalid pointers
(NULL or ~0x0).

GC_ERR_RESOURCE_IN_USE The spedied pBuffer is already announgéo this Data
Streammoduleor, depending on the implementation of
the GenTL Producerit has already been annoudde
another instance of the Data Stream module (see
chapter3.6).

Error casesiot covered in the list above may return error codes according to cleapter
Error Handlingon pageb4.

6.3.5.3 DSClose

GC_ERROR DSClose (DS_HANDLE hDataStream) \

Closes théata Stream module associated with the givBataStreanhandle. This frees all
resources of the Data Stream module, discards and revokes all buffers.

Parameters

[in] hDataStream Data Stream module handle to close.

Returns

GC_ERR_SUCCESS Operation was sicessful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib .

GC_ERR_INVALID_HANDLE The handlhDataStreanis invdid (NULL) or does not
reference an open Data Stream module retrieved
through a call tddevOpenDataStream .

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.3.5.4 DSFlushQueue

GC_ERROR DSFlushQueue (DS_HANDLE hDataStream
ACQ_QUEUE_TYPEiOperation)

Flushes the byOperationdefined internal buffer pool or queue to another one as defined in
ACQ_QUEUE_TYPE

12 December 2013 Page83of 142

GEN<i>CAM i

Version 14 GenTL Standard

Parameters

[in] hDataStream Data Stream module t@ork on.

[in] iOperation Flush operation to perform as defined in

ACQ QUEUE_TYPE

Returns
GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT _INITIALIZED No preceding call t&CinitLib .

GC_ERR_INVALID_HADLE The handldhDataStreanis invdid (NULL) or does not
reference an open Data Stream module retrieved
through a call tddevOpenDataStream .

GC_ERR_NOT_IMPLEMENTED iOperationis not implemented.

Error cases not eered in the list above may return error codes according to chatér
Error Handlingon pageb4.

6.3.5.5 DSGetBufferlD

GC_ERROR DSGetBufferID (DS_HANDLE hDataStream
uint32_ t iindex
BUFFER_HANDLE * phBuffer)

Queries the buffer handle for a given ilndex. The buffer handle works as a unique ID of the
Buffer module.

Note that the relation between index and buffer handle might change with additional
announced and/or revoked ffars. As long as no buffers are announced or revoked this
relation must not change.

The number of announced buffers can be queried witD#@etinfo function.

Parameters

[in] hDataStream Data Stream module to work on.

[in] iindex Zero-based index of the buffer on this data stream.
[in,out] phBuffer Buffer module handle of the giveéimdex

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT _INITIALIZED No preceding call t&CinitLib .

GC_ERR_INVALID_HANDLE The handlhDataStreanis invdid (NULL) or does not
reference an open Data Stream module retrieved
through a call tddevOpenDataStream .

12 December 2013 PageB4 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

GC_ERR_INVALID_INDEX ilndexis greater than the number ahnounced buffers
through calls to DSAllocAndAnnounce or
DSAnnounceBuffer

GC_ERR_INVALID PARAMETERParameterphBuffer is an invalid pointer (NULL or
~0x0).

Error cases not covered in thetlabove may return error codes according to ch&pieb
Error Handlingon pageb4.

6.3.5.6 DSGetBufferinfo

GC_ERROR DSGetBufferinfo (DS_HANDLE hDataStream
BUFFER_HANDLE hBuff er,
BUFFER_INFO_CMDInfoCmd
INFO_DATATYPE * piType |,
void * pBuffer ,
size t* piSize)

Inquire information about the Buffer module associated WwBuffer on the hDataStream
instance as defined BUFFER_INFO_CMD

In case the GenTL Producer needs to dominultiple informations into a structure in order

to reduce the number of calls from the GenTL Consumer to the GenTL Producer this structure
is then queried through a cust@FFER_INFO_CMI. The layout of that struct has to be
documented with the GehTProducer. In case the GenTL Producer implements such
optimization it should nevertheless implement the standard inquiry commands.

Parameters

[in] hDataStream Data Stream module to work on.

[in] hBuffer Buffer handle to retrieve information about.

[in] ilnfoCmd Information to be retrieved as defined in
BUFFER_INFO_CMD

[out] piType Data type of th@Buffercontent as defined in the
BUFFER_INFO_CMRndINFO_DATATYPE

[in,out] pBuffer Pointer to a user allocated buffer to receive the requested
information.If this parameter iSNNULL, piSizewill contain the
minimal size ofpBufferin bytes. If thepiTypeis a string the
size includes the terminating O.

[in,out] piSize pBufferequalNULL
out: minimal size opBufferin bytes to hold all information
pBufferunequalNULL
in: size of the providedBufferin bytes
out: number of bytes filled by the function

Returns

12 December 2013 PageB5 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

GC_ERR_SUCCESS Operation was successful; no error occurred.
GC_ERR_NOT _INITIALIZED No preceding call t&ClnitLib

GC ERR_INVALID_HANDLE The handléhDataStreanis invdid (NULL) or does not
reference an open Data Stream module retrieved
through a call toDevOpenDataStream or the
handlehBufferis invdid (NULL) or does not reference
anannounced Buffemoduleretrieved through a call to
DSAllocAndAnnounce or DSAnnounceBuffer

GC_ERR_NOT_IMPLEMENTED SpecifiediinfoCmdis not implemented.

GC_ERR_INVALID_PARAMETER ParametergiSize and/or piType are invalid pointers
(NULL or ~0x0)

GC_ERR_BUFFER_TOO_SMALLpBufferis not NULL and the value ofpiSizeis too
small to receive the expected amount of data.

GC_ERR_NOT_AVAILABLE The requestis implemented but the equested
informationis currently not available for any reason.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pages4.

6.3.5.7 DSGetInfo

GC_ERROR DSGetInfo (DS_HANDLE hDataStream ,
STREAM_INFO_CMU@infoCmd ,
INFO_DATATYPE * piType ,
void * pBuffer ,
size t* piSize)

Inquire information about the Data Stream module associatechidataStreanas defined in
STREAM_INFO_®™D

Parameters

[in] hDataStream Data Stream module to work on.

[in] iinfoCmd Information to be retrieved as defined in
STREAM_INFO_CMD

[out] piType Data type of th@Buffercontent as defined in the
STREAM_INFO_CMBNndINFO_DATATYPE

[in,out] pBuffer Pointer to a user allocated buffer to receive the requested

information. If this parameter NULL, piSizewill contain the
minimal size ofpBufferin bytes. If thepiTypeis a string the
size includes the terminating O.

[in,out] piSize pBufferequalNULL
out: minimal size opBufferin bytes to hold all information

12 December 2013 PageB6 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

pBufferunequalNULL
in: size of the providedBufferin bytes
out: number of bytes filled by the function

Returns
GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT _INITIALI ZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handléhDataStreanis invdid (NULL) or does not
reference an open Data Stream module retrieved
through a call tddevOpenDat aStream .

GC_ERR_NOT_IMPLEMENTED SpecifiediinfoCmdis not implemented.

GC_ERR_INVALID_PARAMETERParameter9iSize and/or piType are invalid pointers
(NULL or ~0x0)

GC_ERR_BUFFER_TOO_SMALLpBufferis not NULL and the value ofpiSizeis too
small to receie the expected amount of data.

GC_ERR_NOT_AVAILABLE The requestis implemented but the requested
informationis currently not available for any reason.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pages4.

6.3.5.8 DSQueueBuffer

GC_ERROR DSQueueBuffer (DS_HANDLE hDataStream ,
BUFFER_HANDLE hBuffer)

This function queues a particular buffer for acquisition. A buffan be queued for
acquisition any time after the buffer was announced (before or after the acquisition has been
started) when it is not currently queued. Furthermore, a buffer which &lglveaiting to be
delivered canot be queued for acquisition. Aeued buffer cannot be revoked.

The order of the delivered buffers is not necessarily the same as the order in which they have
been queued.

Parameters

[in] hDataStream Data Stream module to work on.

[in] hBuffer Buffer handle to queue.

Returns

GC_ERR_SUCGS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

12 December 2013 PageB7 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

GC_ERR_INVALID_HANDLE The handldhDataStreanis invdid (NULL) or does not
reference an open Data Stream module retrieved
through a call tddevOpenDataStream or hBufferis
invalid (NULL) or does not reference an announced
Buffer.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pages4.

6.3.5.9 DSRevokeBuffer

GC_ERROR DSRevokeBuffer (DS_HANDLE hDataStream ,
BUFFER_HANDLE hBuffer
void ** ppBuffer
void ** ppPrivate)

Removes an announced buffer fraime acquisition engine. This function will free all
internally allocated resources associated with this buffer. A buffer can only be revoked if it is
not queued in any queue. A buffer is automatically revoked when the stream is closed.

Parameters

[in] hDataStream Data Stream module to work on.

[in] hBuffer Buffer handle to revoke.

[out] ppBuffer Pointer to the buffer memory. This is for convenience if
GenTL Consumer allocated memory is used which is to be
freed. If the buffer was allocated by the GenTbdRrcer
NULL is to be returned. If the parameter is seltdLL it is
ignored

[out] ppPrivate Pointer to the user data pointer given in the announce
function. If the parameter is setNdJLLIt is ignored

Returns

GC_ERR_SUCCESS Operation was successful; agor occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handléhDataStreanis invdid (NULL) or does not
reference an open Data Stream module retrieved
through a call tdevOpenDataStream or hBufferis
invalid (NULL) or does not reference an announced
Buffer.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

12 December 2013 PageB88of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

6.3.5.10 DSStartAcquisition

GC_ERROR DSStartAcquisition (DS_HANDLE hDataStream ,
ACQ_START_FLAGSStartFlags ,
uinté4 t INumToAcquire)

Starts the acquisition engine on the ha@sch call toDSStartAcquisition must be

accompanied by a call @SStopAcquisition
Parameters
[in] hDataStream Data Stream module to work on.
[in] iStartFlags As defined inACQ_START_FLAGS
[in] iNumToAcquire Sets the number ditled/deliveredbuffersafter which the
acquisition engine stops automaticaByffers which are
internally discarded or missed are not counteset to
GENTL_INFINITE the acquisition continues until a call to
DSStopAcquisition Is issuedIf setto O a
GC_ERR_INVALID_PARAMETER returned.

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&CinitLib

GC_ERR_INVALID_HANDLE The handléhDataStreanis invdid (NULL) or does not
reference an open Data Stream module retrieved
through a call tddevOpenDataStream .

GC_ERR_NOT_IMPLEMENTED One or more flags sein iStartFlags referencing
functionality which isnot implemented.

GC_ERR_INVALID_PARAMETERINumToAcquires O.

GC_ERR_INVALID_ BUFFER Not enough buffers have been announced to start the
acquisition in the currently active acquisition mode

GC_ERR_RESOURECIN_USE The Acquisition is already active.

GC_ERR_BUFFER_TOO_SMALLOnNe o more of the announced buffers are smaller than
the expected payload requires. This is optional to the
GenTL Producer implementation if it chooses to not
start acquisition in thicase o if the acquisition is
started and the buffers are not or only partially filled.
(see chaptes.2.]).

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

12 December 2013 PageB9 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

6.3.5.11 DSStopAcquisition

GC_ERROR DSStopAcquisition (DS_HANDLE hDataStream
ACQ_STOP_FLAGS iStopFlags)

Stops the acquisition engine on the hdstere must be a call tDSStopAcquisition
accompanying each call RSStartAcquisition even though the stream already stopped
because the number ofafnes to acquire was reached. This is also indepenafetite
acquisition modes.

Parameters

[in] hDataStream Data Stream module to work on.

[in] iStopFlags Stops the acquisition as definedA@Q_STOP_FLAGS
Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No precethg call toGClnitLib

GC_ERR_INVALID_HANDLE The handldhDataStreanis invdid (NULL) or does not
reference an open Data Stream module retrieved
through a call tddevOpenDataStream .

GC ERR_NOT_IMPLEMENTED One or more flags set inStopFlags referencing
functionality which isnot implemented.

GC_ERR_RESOURCE_IN_USE The Acquisitionhas already been terminated or it has
not been started.

Error cases not covered in the list above mayrmeturor codes according to chapét.5
Error Handlingon pageb4.

6.3.5.12 DSGetBufferChunkData

GC_ERRORDSGetBufferChunkData (DS_HANDLE hDataStream
BUFFER_HANDLE hBuffer ,
SI NGLE_CHUNK_DATA *pChunkData
size t* piNumChunks)

DSGetBufferChunkData parses the transport layer technology dependent chunk data
info in the buffer. The layout of the chunk data present in the buffer is returned in the
pChunkDataarray, one entry pethank. Every single chunk is described using its ChunkID,
offset in the buffer and chunk data size.

Parameters
[in] hDataStream DataStream module to work on.
[in] hBuffer Buffer handle to parse.

12 December 2013 Pagef0 of 142

GEN<i>CAM i

Version 14

GenTL Standard

[out] pChunkData User allocated array of structures to reedive chunk layout

information. If this parameter NULL, piNumChunksuvill
contain thenumber of chunks in the buffare. the minimal
number of entries in theChunkDataarray.

[in,out] piNumChunks pChunkDateequalNULL:

Returns

out: number of chunks in the ef (minimal number of
entries in theChunkDataarray to hold all information)
pChunkDataunequalNULL:

in: number of entries in the provide€hunkDataarray
out: number of entries successfully written to the
pChunkDataarray

GC_ERR_SUCCESS Opemrtion was successful; no error occurred.
GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib
GC_ERR_INVALID_HANDLE The handléhDataStreamis invdid (NULL) or does not

reference an open Data Stream module retrieved
through a call to DevOpenDataStream or the
handlehBufferis invdid (NULL) or does not reference
anannounced Buffemoduleretrieved through a call to
DSAllocAndAnnounce or DSAnnounceBuffer

GC_ERR_INVALID PARAMETERParametepiNumChunksis aninvalid pointer (NULL

or ~0x0)

GC_ERR_NO_DATA The Buffer referenced byBuffer does not contain

chunk data.

GC_ERR_BUFFER_TOO_SMALLpChunkData is not NULL and the value of

*piNumChunksis too small to receive the expected
amount of data.

GC_ERR_PARSING_CHUNK_ DA error occurred during the parsing of the chunk

buffer.

GC_ERR_NOT_AVAILABLE The requestis implemented but the requested

informationis curently not available for any reason.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

12 December 2013 Pagedlof 142

GEN<I>CAM Fie

Version 14

GenTL Standard

6.3.5.13 DSGetParentDev

GC_ERROR DSGetParentD

ev (DS_HANDLE hDataStream,
DEV_HANDLE * phDevice)

Retrieve a handle to the parent Device module.

Parameters

[in] hDataStream
[out] phDevice

Returns
GC_ERR_SUCCES

GC_ERR_NOT_INITIALIZED

Data Stream module to work on.
Handle to the parent Device module .

Operation was successful; no error occurred.

No preceding call t&CinitLib .

GC_ERR_INVALID_HANDLE The handldhDataStreanis invdid (NULL) or does not

reference an open Data Stream module retrieved
through a call tddevOpenDataStream .

GC_ERR_INVALID PARAMETERParametemphDeviceis an invalid pointer (NULL or

~0x0)

Error cases not covered in the list above may return error codes according to 6Hapter

Error Handlingon pages4.
6.3.6 Port Functions

6.3.6.1 GCGetPortInfo

GC_ERROR GCGetPortInfo

(PORT_HANDLE hPort
PORT_INFO_CMD ilnfoCmd
INFO_DATATYPE * piType ,
void * pBuffer ,
size t* piSize)

Queries detailed port information as definedP@RT_INFO_CMD

Parameters

[in] hPort

[in] iinfoCmd
[out] piType

[in,out] pBuffer

Module or remote device port handle to access Port from.
Information to be retrieved as definedRORT_INFO_CMD
Data type of th@Buffer content as defined in the
PORT_INFO_CMRndINFO_DATATYPE

Pointer to a user allocated buffer to receive the requested
information. If this parameter NULL, piSizewill contain the

12 December 2013 Paged2 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

minimal size ofpBufferin bytes. If thepiTypeis astring the
size includes the terminating 0.

[in,out] piSize pBufferequalNULL
out: minimal size opBufferin bytes to hold all information
pBufferunequalNULL
in: size of the providedBufferin bytes
out: number of bytes filled by the function

Returns
GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT _INITIALIZED No preceding call t&CinitLib .

GC_ERR_INVALID_HANDLE The handlehPort is invdid (NULL) or does not
reference an open module

GC_ERR_NOTMPLEMENTED SpecifiediinfoCmdis not implemented or the provided
module handle does not have a Port module
implemented.

GC_ERR_INVALID PARAMETERParametersiSize and/or piType are invalid pointers
(NULL or ~0x0)

GC_ERR_BUFFER_TOO_SMALLpBufferis not NULL and the value ofpiSizeis too
small to receive the expected amount of data.

GC_ERR_NOT_AVAILABLE The requestis implemented but the requested
informationis currently not available for any reason.

Error cases not covered in the list above mayrmeturor codes according to chapét.5
Error Handlingon pageb4.

6.3.6.2 GCGetPortURL

GC_ERROR GCGetPortURL (PORT_HANDLE hPort ,
char * sURL
size t* piSize)

GCGetPortURL retrieves a URL list with the XML description for the giveRort See
4.1.2 XML Description page31 for more information about supported URLs. Each URL is
terminated witta t r 40i6l iaangd Gaf ter tWé.|l ast URL are

In case of multiple XMLs in the device theGCGetNumPortURLs and
GCGetPortURLInfo should be used.

This function has beendepecated. Producers should support the new functions
GCGetNumPortURLs and GCGetPortURLInfo . In this casethis function may only
return a subset of the available URLs in the stlistg It is up to the implementor which URL
to return.

12 December 2013 Paged3of 142

W o

GEN<I>CAM Fie

Version 14 GenTL Standard

Parameters

[in] hPort Module or remote device port handle to access Port from.
[in,out] SURL Pointer to a user allocated string buffer to receive the list of

URLs If this parameter iISULL, piSizewill contain the
needed size fURLIn bytes. Each entry in the listis O
terminated. After the last entry there is an additional 0. The
size includes the terminating O characters.

[in,out] piSize sURLequalNULL:

out: minimal size o6URLIn bytes to holdall information
sURLunequaNULL

in: size of the providedURLIn bytes

out: number of bytes filled by the function

Returns
GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib
GC_ERR_INVALID_HANDLE The handlehPort is invdid (NULL) or does not

reference an open module

GC_ERR_BUFFER_TOO_SMALLSsURLisnot NULL and the value ofpiSizeis too small

to receive the expected amount of data.

GC_ERR_INVALID_PARAMETERParametepiSizeis aninvalid pointer (NULL or ~0x0)
GC_ERR_NOT_IMPLEMENTED The provided module handle does not have a Port

module implemented.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.3.6.3 GCGetNumPortURLSs

GC_ERROR GCGetNumPortURLs (PORT_HANDLE hPort

uint32_t * piNumURLs)

Inquire the number of available URLSs for this port.

Parameters

[in] hPort Module or remote device port handle to access Port from.
[out] piNumURLS Number of available URL entries.

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&CnitLib

12 December 2013 Paged4 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

GC_ERR_INVALID_HANDLE The handlehPort is invdid (NULL) or does not
reference an open module

GC_ERR_INVALID_PARAMETERParametepiNumURLsis aninvalid pointer (NULL or
~0x0)

GC_ERR_NOT_IMPLEMENTED The provided module handle does not have a Port
module implemented.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.3.6.4 GCGetPortURLINnfo

GC_ERROR GCe@tPortURLInfo (PORT_HANDLE hPort ,
uint32_t IURLINdex,
URL_INFO_CMD ilnfoCmd
INFO_DATATYPE * piType |,
void * pBuffer ,
size t* piSize)

Queries detailed port information as definedJRL_INFO_CMD

In case a module does not supputtltiple URLs and/orthe related infonationthe function
will return GC_ERR_NOT_AVAILABLEor information which cannot be retrieved.

Parameters

[in] hPort Module or remote device port handle to access Port from.

[in] iIURLIndex Index of the URL to query.

[in] ilnfoCmd Information to be retrieved as definedWRL_INFO_CMD

[out] piType Data type of th@Buffercontent as defined in the URL
URL_INFO_CMDandINFO_DATATYPE

[in,out] pBuffer Pointer to a user allocated buffer to receive the requested
information. If this parametes NULL, piSizewill contain the
minimal size ofpBufferin bytes. If thepiTypeis a string the
size includes the terminating O.

[in,out] piSize pBufferequalNULL
out: minimal size opBufferin bytes to hold all information
pBufferunequaNULL
in: sze of the providegBufferin bytes
out: number of bytes filled by the function

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

12 December 2013 Paged5 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

GC_ERR_INVALID _HANDE The handlehPort is invdid (NULL) or does not
reference an open module

GC_ERR_INVALID_INDEX iindexis greater than the number available URLs

GC_ERR_NOT_IMPLEMENTED SpecifiediinfoCmdis not implemented or the provided
module handle does not have Bort module
implemented.

GC_ERR_NOT_AVAILABLE The module does not provide the requested
information.

GC_ERR_NOT_IMPLEMENTED SpecifiediinfoCmdis not implemented.

GC_ERR_INVALID_PARAMETERParametergiSize and/or piType are invalid pointers
(NULL or ~0x0).

GC_ERR_BUFFER_TOO_SMALLpBufferis not NULL and the value ofpiSizeis too
small to receive the expected amount of data.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pages4.

6.3.6.5 GCReadPort

GC_ERROR GCReadPort (PORT_HANDLE hPort ,
uint64 _t IAddress
void * pBuffer ,
size t* piSize)

Reads a number of bytes from a giv@ddressfrom the specifiehPort This is the global
GenlCam GenApi read access function for all ports implemented in the GenTL
implementation. The endiaass of the data content is specified by &€GetPortinfo
function.

If the underlying technology hadignment restrictions on the port read the GenTL Provider
implementation has to handle this internally. So for example if the underlying technology
only allows a uint32_t aligned access and the calling GenTLConsumer wants to read 5 bytes
starting at addiss 2. The implementation has to read 8 bytes starting at address 0 and then it
must only return the requested 5 bytes.

Parameters

[in] hPort Module or remote device port handle to access Port from.

[in] iIAddress Byte address to read from.

[out] pBuffer Pointer to a user allocated byte buffer to receive data; this
must not beNULL

[in,out] piSize Size of the provide@Bufferand thus the amount of bytes to

read from the register map; after the read operation this

12 December 2013 Paged6 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

parameter holds the information about ltiytes actually
read.

Returns
GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT _INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handlehPort is invdid (NULL) or does not
reference m open module

GC_ERR_INVALID_PARAMETERParametergpBuffer and/or piSize are invalid pointers
(NULL or ~0xO0).

GC_ERR_ACCESS DENIED The acces 0 the requestedegisteriAddressis denied
because the register is not readabldecause the Port
module is opned in a way that it does not allow read
access

GC_ERR_INVALID _ADDRESS iAddressi s i nvalid for exampl e
register space is only 32Bit wide aiftdressis in the
64Bit register spacer because there is no register with
the providedAddress

GC_ERR_NOT_IMPLEMENTED The provided module handle does not have a Port
module implemented.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.3.6.6 GCWritePort

GC_ERROR GCWritePort (PORT_HANDLE hPort
uinté4 t IAddress
const void * pBuffer ,
size t* piSize)

Writes a number of bytes at the givexddressto the specifiechPort This is the global
GenlCam GenApi write access function for all ports implemented in the GenTL
implementation. The enchaess of the data content is specified by @@GetPortinfo
function.

If the underlying technology has alignment resimiecs on the port write the GenTL Provider
implementation has to handle this internally. So for example if the underlying technology
only allows a uint32_t aligned access and the calling GenTL Consumer wants to write 5 bytes
starting at address 2. The implentation has to read 8 bytes starting at address 0, replace the
5 bytes provided and then write the 8 bytes back (read modify write).

12 December 2013 Paged7 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

Parameters

[in] hPort Module or remote device port handle to access the Port from.

[in] IAddress Byte address to write®.

[in] pBuffer Pointer to a user allocated byte buffer containing the data to
write; this must not b&lIULL

[in,out] piSize Size of the provide@Bufferand thus the amount of bytes to

write to the register map; after the write operation this
parameter dlds the information about the bytes actually
written.

Returns
GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handlehPort is invdid (NULL) or does not
reference an open module

GC_ERR_INVALID_PARAMETERParametergpBuffer and/or piSize are invalid pointers
(NULL or ~0xO0).

GC_ERR_ACCESS DENIED The acces the requestedegisteriAddressis denied
because the register is not writabk because the Port
module is opened in a way that it does not allow write
access

GC_ERR_INVALID_ADDRESS iAddressi s i nvalid for exampl e
register space is only 32Bit wide aitldressis in the
64Bit register space or because theraa register with
the providedAddress

GC_ERR_NOT_IMPLEMENTED The provided module handle does not have a Port
module implemented.

GC_ERR_INVALID_VALUE An invalid value has been written. This error code is to
be returned if the underlying registermajpydes that
information. In case the underlying technology does not
provide that level of information a
GC_ERR_ACCESS DENIEBBto be returned.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

12 December 2013 Paged8 of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

6.3.6.7 GCWritePortStacked

GC_ERROR GCWritePortStacked (PORT_HANDLE hPort ,
PORT_REGISTER_STACK_ENTRY *
pEntries
size t* piNumEntries)

Writes a number of bytes the given address on the specifig@ort for every element in the
pEntriesarray. The endiaress of the data content is specified by @@GetPortinfo
function.

If the underlying technology has alignment restrictionshengdort write the GenTL Provider
implementation has to handle this internally. So for example if the underlying technology
only allows a uint32_t aligned access and the calling GenTL Consumer wants to write 5 bytes
starting at address 2. The implementatias to read 8 bytes starting at address 0, replace the
5 bytes provided and then write the 8 bytes back (read/modify/write).

In case of an error the function returns the number of successful wrggsumEntrieseven
though it returns an error code @&turn value. This is an exception to the statement in the
section Error Handling.

Parameters

[in] hPort Module or remote device port handle to access the Port from.

[in] pEntries Array of structures containing write address and data to write.

[in,out] piNumEntries In: Number of entries in the array, Out: Number of successful
executed writes according to the entries ingRatriesarray.

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handlehPort is invdid (NULL) or does not
reference an open module

GC_ERR_INVALID_PARAMETERParametergEntries and/or piNumEntriesare invalid
pointers (NULL or ~0x0).

GC_ERR_ACCESS_DENIED The acces 0 at least on®f the requestedegisters is
deniedbecause the register is not writalole because
the Port module is opened in a way that it does not
allow write access

GC_ERR_NOT_IMPLEMENTED The provided module handle does not have a Port
module implemented.

GC_ERR_INVALID_ADDRESS One or more entries ipEntrieshas an invalid address
for example because the port
32Bit wide andiAddressis in the 64Bit register space

12 December 2013 PageQ9 of 142

GEN<I>CAM Fie

Version 14

GenTL Standard

GC_ERR_INVALID_VALUE

or because there is no register with the specified
address

An invalid value has been written. This error code is to
be returned if the underlying registermap provides that
information. In case the underlying
technology/registermap does not provide that level of
information a GC_ERRACCESS DENIEDis to be
returned.

Error cases not covered in the list above may return error codes according to 6Hapter

Error Handlingon pageb4.

6.3.6.8 GCReadPortStacked

GC_ERROR GCReadPortStacked (PORT_HANDLE hPort ,

PORT_REGISTER_STACK_ENTRY *
pEntries
size t * piNumEntries)

Reads a number of byté®m the given address on the specifl@eort for every element in
the pEntriesarray. The endiaess of the data comiieis specified by th6&CGetPortinfo

function.

If the underlying technology has alignment restrictions on thegoodsshe GenTL Provider
implementation has to handle this internally. So for example if the undetigamology

only allows a uint32_t aligned access and the calling GenTL Consumer wants to read 5 bytes
starting at address 2. The implementation has to read 8 bytes starting at address 0 and to

extract the 5 bytes requested.

In case of an error the funatioeturns the number of successful readgsiNumEnNtrieseven

though it returns an error code as return value. This is an exception to the statement in the

section Error Handling.

Parameters

[in] hPort Module or remote device port handle to access thefioon.

[in] pEntries Array of structures containingadaddress and data tead

[in,out] piNumEntries In: Number of entries in the array, Out: Number of successful
executed reads according to the entries irptriesarray.

Returns

GC_ERR_SUCCESS
GC_ERR_NOT_INITIALIZED
GC_ERR_INVALID_HANDLE

Operation was successful; no error occurred.
No preceding call t&ClnitLib

The handlehPort is invdid (NULL) or does not
reference an open module

12 December 2013 Pagel00of 142

GEN<i>CAM i

Version 14 GenTL Standard

GC_ERR_INVALID_PARAMETERParameers pEntries and/or piNumEntriesare invalid
pointers (NULL or ~0x0).

GC_ERR_ACCESS _DENIED The acces 0 at least on®f the requestedegisters is
deniedbecause the register is not readaiMdoecause
the Port module is opened in a way that it does not
allow read access

GC_ERR_NOT_IMPLEMENTED The provided module handle does not have a Port
module implemented.

GC_ERR_INVALID_ADDRESS One or more addresses in the entriegsintrieshas an
invalid address or exampl e because
space is nly 32Bit wide andiAddressis in the 64Bit
register space or because there is no register with the
specified address

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pages4.

6.3.7 Signaling Functions

6.3.7.1 EventFlush

GC_ERROR EventFlush (EVENT_HANDLE hEvent)

Flushes all events in the givaEventobject. This call empties the event data queue.

Parameters

[in] hEvent Event handle to flush queue on.

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handlehEvent is invdid (NULL) or does not
reference a previously registered event

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

12 December 2013 PagelOlof 142

t

h

GEN<I>CAM Fie

Version 14 GenTL Standard

6.3.7.2 EventGetData

GC_ERROR EventGetData (EVENT_HANDLE hEvent ,
void * pBuffer ,
size t* piSize
uint64 _t iTimeout)

Retrieves the next event data entry from the event data queue associated hétretite

The data content can be queried byEkentGetDatalnfo function.

The default buffer size which can hold all the event data can be queried with the
EventGetinfo function. This needs to be queried only once. The default size must not
change durig runtime.

In case of a New Buffer event theEventGetData function return the
EVENT_NEW_BUFFER_DAS#&ucture in the provided buffer.

In caseEventGetData returns an error (for exampl€éC_ERR_ABORTNo event is
removed from the internal queue and then¢wtays signaled. Event counters are not affected.

Parameters
[in] hEvent Event handle to wait for
[out] pBuffer Pointer to a user allocated buffer to receive the event data.

The data type of the buffer is dependent on the event ID of
thehEvent If this value isSNULL the data is removed from
the queue without being delivered.

[in,out] piSize Size of the provide@Bufferin bytes; after the write
operation this parameter holds the information about the
bytes actually written.

[in] iTimeout Timeout for he wait in mslf set toGENTL_INFINITE the
timeout is infinite and the functionillvonly return if the
operation is completeor if EventKill is called on this
event object
A value of 0 checks the state of the event dlged returns
immediately either with a timeout or with event data.

Returns
GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib .

GC_ERR_INVALID_HANDLE The handd hEventis invdid (NULL) or does not
reference a previously registered event

GC_ERR_INVALID_PARAMETERParametepiSizeis an invalid pointer (NULL or ~0x0).

GC_ERR_BUFFER_TOO_SMALLpBufferis not NULL and the value ofpiSizeis too
small to receive thexpected amount of data.

12 December 2013 Pagel02of 142

° X
GEN<I>CAM i
Version 14 GenTL Standard
GC_ERR_ABORT The current wait operation has been terminated through
a call toEventKill .
GC_ERR_TIMEOUT The specifiedTimeoutexpired before theventhEvent

occurred.

Error cases not covered the list above may return error codes according to chéples

Error Handlingon pageb4.

6.3.7.3 EventGetDatalnfo

GC_ERROR EventGetDatalnfo (EVENT_HANDLE hEvent ,
const void * pinBuffer
size t iinSize ,

EVENT_DATA_INFO_CMDInfoCmd
INFO_DATATYPE * piType ,

void * pOutBuffer

size t* piOutSize)

Parses the transport layer technology dependent event info.

Parameters

[in] hEvent
[in] pinBuffer
[in] iinSize
[in] ilnfoCmd

[out] piType

[in,out] pOutBuffer

[in,out] piOutSize

Returns

GC_ERR_SUCCESS

Event handle to parse data from.

Pointer to a buffer containing event data. This value must not
beNULL

Size of the provideg@InBufferin bytes

Information to be retrieved as defined in
EVENT_DATA_INFO_CMBndEVENT_TYPE

Data type of th@OutBuffercontent as defined in the
EVENT_DATA_INFO_CMDEVENT_TYPEand
INFO_DATATYPE

Pointer to a user allocated buffer to receive the requested
information. If this parameter MULL, piOutSizewill contain
the minimal size opOutBufferin bytes. If thepiTypeis a
string the size includes the terminating O.
pOutBufferequalNULL

out: minimal size opOutBufferin bytes to hold all
information

pOutBufferunequalNULL

in: size of the providedOutBufferin bytes

out: numbe of bytes filled by the function

Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

12 December 2013 Pagel03of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

GC_ERR_INVALID_HANDLE The handlehEventis invdid (NULL or ~ 0xQ or does
not reference a previously registered ewarinBuffer
is invalid (NULL or ~0x0)

GC_ERR_NOT_IMPLEMENTED SpecifiediinfoCmdis not implemented.

GC_ERR_INVALID_PARAMETERParameterpiOutSizeand/orpiTypeare invalid pointers
(NULL or ~0x0)orilnSizeis 0

GC_ERR_BUFFER_TOO_SMALL pOutBufferis not NULL and the value ofpiOutSizeis
too small to receive the expected amount of data.

GC_ERR_NOT_AVAILABLE The requestis implemented but the requested
informationis currently not available for any 1s@n.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pages4.

6.3.7.4 EventGetinfo

GC_ERROR EventGetinfo (EVENT_HAIDLE hEvent ,
EVENT_INFO_CMD ilnfoCmd ,
INFO_DATATYPE * piType ,
void * pBuffer ,
size t* piSize)

Retrieves information about the giveRventobject as defined iEVENT_INFO_CMD

Parameters

[in] hEvent Event handle to retrieve info from.

[in] ilnfoCmd Information to be retrieved as defined in
EVENT_INFO_CMD

[out] piType Data type of th@Buffercontent as defined in the
EVENT_INFO_CM@RndINFO_DATATYPE

[in,out] pBuffer Pointer to a user allocated buffer to receive the requested
information. If this paramet iSNULL, piSizewill contain the
minimal size ofpBufferin bytes. If thepiTypeis a string the
size includes the terminating 0.

[in,out] piSize pBufferequalNULL
out: minimal size opBufferin bytes to hold all information
pBufferunequaNULL
in: size of the provideg@Bufferin bytes
out: number of bytes filled by the function

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

12 December 2013 Pagel04of 142

GEN<i>CAM i

Version 14 GenTL Standard

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANLE The handlehEvent is invdid (NULL) or does not
reference a previously registered event

GC_ERR_NOT_IMPLEMENTED SpecifiediinfoCmdis not implemented.

GC_ERR_INVALID_PARAMETERParameter9iSize and/or piType are invalid pointers
(NULL or ~0x0)

GC_ERRBUFFER_TOO_SMALL pBufferis not NULL and the value ofpiSizeis too
small to receive the expected amount of data.

GC_ERR_NOT_AVAILABLE The requestis implemented but the requested
informationis currently not available for any reason.

Error cases notavered in the list above may return error codes according to clGaftér
Error Handlingon pages4.

6.3.7.5 EventKill

GC_ERROR EventKill (EVENT_HANDLE hEvent) |

Terminate a wailhg operation on a previously registered event object. In case of multiple
pending wait operationsEventKill causes one wait operation to retumth a
GC_ERR_ABORError code Therefore in order to cancel all pendingitwoperations
EventKill must be called as many times as wait operations are perdirgase this
function is calkkdwhile no wait operation was pending the next calEt@ntGetData will

return aGC_ERR_ABORThis behavior can be cleared by unregistering and reregistering the
event.

In case there are pending events in the queuBvhstKill has higher priority and on the
pending/next call teventG etData aGC_ERR_ABORIS§ returned.

EventKill does not free any resources.

Parameters

[in] hEvent Handle to event object.

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handlehEvent is invdid (NULL) or does not
reference a previously registered event

12 December 2013 Pagel05of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

Error cases not covered in the list above may return error codes according to 6Hapte
Error Handlingon pageb4.

6.3.7.6 GCRegisterEvent

GC_ERROR GCRegisterEvent (EVENTSRC_HANDLEModule ,
EVENT_TYPE IEventlD
EVENT_HANDLE * phEvent)

Registers an event it to a certaiEventID. The implementation might change depending
on the platform.

Every event registered must be unregistered witlielnregisterEvent function.

Parameters

[in] hModule Module handle to acce$s register event to.

[in] iEventID Event type to register as definedANENT_TYPE

[out] phEvent New handle to an event object to work withis
recommended to initializeghEventto
GENTL_INVALID HANDLEbefore calling
GCRegisterEvent to indicate an invalid handle.

Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.

GC_ERR_NOT_INITIALIZED No preceding call t&ClnitLib

GC_ERR_INVALID_HANDLE The handlehModule is invalid (NULL) or does not
reference a previously instatiated module

GC_ERR_RESOURCE_IN_USE The giveniEventID has been registered before on the
givenhModule

GC_ERR_NOT_IMPLEMENTED The specified event type is not implementedtlie
provided module of th&enTL Producer.

GC_ERR_NOT_AVAILABLE The specified event type is not available in the provided
module hModule (for example because the remote
device does not implement it).

Error cases not covered in the list above may return error codes accordingtey 6Hap
Error Handlingon pageb4.

12 December 2013 Pagel06of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

6.3.7.7 GCUnregisterEvent

GC_ERROR GCUnregisterEvent (EVENTSRC_HANDLEModule ,
EVENT_TYPE iIEventID)

A call to this function will unregisterthe giveniEventlID from the givenhModule This will
terminate all pending wait operations dEventGetData with an error code
GC _ERR_ABOR™Pending events are silently discarded.

Parameters

[in] hModule Module handle tanregister evenvith.

[in] iEventID Event type to unregister as definedeMENT_TYPE
Returns

GC_ERR_SUCCESS Operation was successful; no error occurred.
GC_ERR_NOT_INITIALIZED The event has not previousheemregstered through

GCRegisterEvent or no preceding call to
GClnitLib has been made

GC_ERR_INVALID_HANDLE The handlehModule is invdid (NULL) or does not
reference a previously instatidtenodule

GC_ERR_NOT_IMPLEMENTED The specified event type is not implemented in the
provided module of the GenTL Producer.

Error cases not covered in the list above may return error codes according to 6Hapter
Error Handlingon pageb4.

6.4 Enumerations
Enumeration values are signed 32 bit integers.
6.4.1 Library and System Enumerations

6.4.1.1 INFO_DATATYPE

enum INFO_DATATYPE

Defines the data type possible for the various Info funstidhe data type itself may define
its size. For buffer or string types tlpgSize parameter must be used to query the actual
amount of data being written.

Enumerator Value Description

INFO_DATATYPE_UNKNOWN 0 Unknown data type. This value is
never returad from a function but ca
be used to initialize the variable to

12 December 2013 Pagel07of 142

[]
GEN<I>CAM e

Version 14 GenTL Standard

Enumerator Value Description
inquire the type.

INFO_DATATYPE_STRING 1 O-terminated C stringeficoding
according to the
TL_INFO_CHAR_ENCODIN@fo
commangl.

INFO_DATATYPE_STRINGLIST 2 Concatenated
INFO_DATATYPE_STRINGIst. End
of list is signaled with an additional (

INFO_DATATYPE_INT16 3 Signed 16 bit integer.

INFO_DATATYPE_UINT16 4 Unsigned 16 bit integer.

INFO_DATATYPE_INT32 5 Signed 32 bit integer.

INFO_DATATYPE_UINT32 6 Unsigned 32 bit integer.

INFO_DATATYPEINT64 7 Signed 64 bit integer.

INFO_DATATYPE_UINT64 8 Unsigned 64 bit integer.

INFO_DATATYPE_FLOAT64 9 Signed 64 bit floating point number.

INFO_DATATYPE_PTR 10 Pointer type\oid*). Size is platforn
dependent (32 bit on 32 bit platform

INFO_DATATYH_BOOLS 11 Boolean value occupying 8 bit. O for
false and anything fotrue .

INFO_DATATYPE_SIZET 12 Platform dependent unsigned intege
(32 bit on 32 bit platforms)

INFO_DATATYPE_BUFFER 13 Like aINFO_DATATYPE_STRING
but with arbitrary data and no O
termination.

INFO_DATATYPE PTRDIFF 14 The type ptrdiff_t is a type that can
hold the result of subtracting two
pointers.

INFO_DATATYPE_CUSTOM ID 1000 Starting value for Custom IDs which

are implementation specific.

If a generic GenTL Consumer is usit
custan data types provided through
specific GenTL Producer
implementation it must differentiate
the handling of GenTL Producer
implementations in case other
implementations will not provide tha
custom id or will use a different
meaning with it.

12 December 2013

Pagel08of 142

° “"%
GEN<I>CAM e
Version 14 GenTL Standard
6.4.1.2 TL_CHAR_ENCODING_LIST
enum TL_CHAR_ENCODING_LIST
Char encoding schemata
Enumerator Value Description
TL_CHAR_ENCODING_ASCII 0 Char encoding of the GenTL Produgd
is ASCII
TL_CHAR_ENCODING_UTF8 1 Char encoding of the GenTL Produgd
is UTF8

6.4.1.3 TL_INFO_CMD

enum TL_ INFO_CMD

System module information commands for Th&etinfo andGCGetInfo functions.

Enumerator

Value

Description

TL_INFO_ID

0

Unique ID identifying a GenTL
Producer. For example the fileana of
the GenTL Producer implementatior
incl. its path.

Data type: STRING

TL_INFO_VENDOR

GenTL Producer vendor name.
Data type: STRING

TL_INFO_MODEL

GenTL Producer model name.

For example: Assuming a vendor
produces more than one GenTL
Producer fodifferent device classes
or different technologies the Model
references a single GenTL Produce
implementation. The combination of
Vendor and Model provides a uniqu
reference of ONE GenTL Producer
implementation.

Data type: STRING

TL_INFO_VERSION

GenTL Producer version.
Data type: STRING

TL_INFO_TLTYPE

Transport layer technolgghatis
supportedSee string constants in
chapter 6.6.1.

Data type: STRING

TL_INFO_NAME

File name including extension of the
library.
Data type: STRING

12 December 2013 Pagel09of 142

[]
GEN<I>CAM e
Version 14 GenTL Standard
Enumerator Value Description
TL_INFO_PATHNAME 6 Full path including file name and
extension of the library.
Data type: STRING
TL_INFO_DISPLAYNAME 7 User readable name of the GenTL
Producer.
Data type: STRING
TL_INFO_CHAR_ENCODING 8 The char encoding of the GenTL
Producer.
Data type: INT32
(TL_CHAR ENCODING_LIST
enumeration value)
Data typeiINT32
TL_INFO_CUSTOM_ID 1000 Starting value for GenTL Producer

custom IDs which are implementatig
specific.
If a generic GenTL Consumer is usit
customTL_INFO_CMID provided
through a specific GenTL Producer
implementation it must differentiate
the handling of different GenTL
Producer implementations in case
other implementations will not provig
that custom id or will use a different
meaning with it.

6.4.2 Interface Enumerations

6.4.2.1 INTERFACE_INFO_CMD

enum INTERFACE_INFO_CMD

This enumeration defines commands to retrieve information withF@etinfo

from the Interface module.

function

Enumerator Value Description
INTERFACE_INFO_ID 0 Unique ID of the interface.
Data type: STRING
INTERFACE_INFO_DISPLAYNAME 1 User readable name of the interface.
Data type: STRING
INTERFACE_INFO_TLTYPE 2 Transport layer technolgghat is

supportedSee string constants in
chapter 6.6.1.
Data type: STRING

INTERFACE_INFO_CUSTOM_ID

1000

Starting value foGenTL Producer

12 December 2013

Pagell0of 142

~ T
GEN<I>CAM e
Version 14 GenTL Standard
Enumerator Value Description
custom IDs which are implementation

specific.

If a generic GenTL Consumer is using
customINTERFACE_INFO_CMB
provided through a specific GenTL
Producer implementation it must
differentiate the handling of different
GenTL Producer impleméations in
case other implementations will not
provide that custom id or will use a
different meaning with it.

6.4.3 Device Enumerations

6.4.3.1 DEVICE_ACCESS_FLAGS

[enum DEVICE_ACCESS_FLAGS

This enumeration defines flags how a device is to be opened with-@menDevice
function. Also possible results are defined.

Enumerator

Value

Description

DEVICE_ACCESS_UNKNOWN

0

Not used in a command. Can be used
initialize a variable to query that
information.

DEVICE_ACCESS_NONE

This eiher means that the device is no
open because it was not opened befor
the access to it was denied.

DEVICE_ACCESS_READONLY

Open the device read only. All Port
functions can only read from the devic

DEVICE_ACCESS_CONTROL

Open the device in a wdlgat other
hosts/processes can have read only
access to the device. Device access lg
is read/write for this process.

DEVICE_ACCESS_EXCLUSIVE

Open the device in a way that only this
host/process can have access to the
device. Device access level ead/write
for this process.

DEVICE_ACCESS_CUSTOM_ID

1000

Starting value for GenTL Producer
custom IDs which are implementation
specific.

If a generic GenTL Consumer is using
customDEVICE_ACCESS_FLAGS
provided through a specific GenTL

12 December 2013

Pagelllof 142

GEN<i>CAM i

Version 14 GenTL Standard

Enumerator Value Description

Producer implemeation it must
differentiate the handling of different
GenTL Producer implementations in
case other implementations will not
provide that custom id or will use a
different meaning with it.

6.4.3.2 DEVICE_ACCESS_STATUS

enum DEVICE_ACCESS_STATUS

This enumeration dimes the status codes used in the info functions to retrieve the current
accessibility of the device.

Enumerator Value Description
DEVICE_ACCESS _STATUS UNKNO] 0 The current availability of the device ig
unknown.
DEVICE_ACCESS_STATUS _READW 1 The deice is available for Read/Write
TE access

DEVICE_ACCESS_STATUS_READO 2 The device is available for Read acceg
Y

DEVICE_ACCESS _STATUS NOACC| 3 The device is not available either
S because it is already open or because
not reachable.

DEVICE_ACCESSSTATUS_CUSTOM 1000 |Starting value for custom IDs which ar
ID implementation specific.

If a generic GenTL Consumer is using
customDEVICE_ACCESS_STATUHRls
provided through a specific GenTL
Producer implementation it must
differentiate the handling of ffierent
GenTL Producer implementations in
case other implementations will not
provide that custom id or will use a
different meaning with it.

6.4.3.3 DEVICE_INFO_CMD

enum DEVICE_INFO_CMD

This enumeration defines commands to retrieve information witb#w&setinfo function
on a device handle.

Enumerator Value | Description

DEVICE_INFO_ID 0 |Unique ID of the device.

12 December 2013 Pagell2of 142

GEN<I>CAM

7

Version 14

GenTL Standard

Enumerator Value |Description

Data type: STRING
DEVICE_INFO_VENDOR 1 Device vendor name.

Data type: STRING
DEVICE_INFO_MODEL 2 Device model name.

Data type: STRING
DEVICE_INFO_TLTYPE 3 Transport layer technolgghat is

supportedSee string constants in

chapter 6.6.1.

Data type: STRING
DEVICE_INFO_DISPLAYNAME 4 User readable name of the device. If t

is not defined in the device this should

be ENNDOR MODEL (1 O

Data type: STRING
DEVICE_INFO_ACCESS_STATUS 5 Gets the access status the GenTL

Producer has on the device.

Data type: INT32

(DEVICE_ACCESS_STATUS

enumeration value)
DEVICE_INFO_USER_DEFINED_NAIl 6 String containing the user defined nam
E of the device. If the

information is not available, the query

should result in

GC_ERR_NOT_AVAILABLE

Data type: STRING
DEVICE_INFO_SERIAL _NUMBER 7 Serial number of the device in string

format. If the information is not

available,

the query should sailt in

GC_ERR_NOT_AVAILABLE

Data type: STRING
DEVICE_INFO_VERSION 8 Device version in string format. If the

information is not known, the query
should result in
GC_ERR_NOT_AVAILABLE

Data type: STRING

DEVICE_INFO_TIMESTAMP_FREQU
NCY

Tick frequencyof t he devi
timesamp counter in ticks per second
The counter is used for example to
assign timestamps to the individual
acquired buffers
(BUFFER_INFO_TIMESTAMP

Data type: UINT64

DEVICE_INFO_CUSTOM_ID

1000

Starting value for GenTL Producer
customIDs which are implementation

12 December 2013

Pagell3of 142

GEN<i>CAM i

Version 14 GenTL Standard

Enumerator Value |Description

specific.

If a generic GenTL Consumer is using
customDEVICE_INFO_CMI provided
through a specific GenTL Producer
implementation it must differentiate thg¢
handling of different GenTL Producer
implementations in case other
implementations will not provide that
custom id or will use a different meani
with it.

6.4.4 Data Stream Enumerations

6.4.4.1 ACQ QUEUE_TYPE

enum ACQ_QUEUE_TYPE

This enumeration commands from which to which queue/pool buffers are flushed with the
DSFlushQueue function.

Enumerator Value Description

ACQ _QUEUE_INPUT_TO_OUTPUT 0 Flushes théuffers from thenput pool
to the output buffer queue and if
necessary adds en
Buf ferdo event dat
currently being filled are not affected by,
this operation.

This only applies to the mandatory
defaultbuffer handlingnode. The fill
state ofabuffer can be inquired througt
the buffer info command
BUFFER_INFO_NEW_DATA.

This allows the GenTL Consumer to
maintain all bdfers without a second
reference in the GenTL Consumer
because all buffers are delivered throy
the new buffer event.

ACQ_QUEUE_OUTPUT_DISCARD 1 Discards all buffers in the output buffe
gueue and if necessary remove the
entries from the event data qeeu

ACQ_QUEUE_ALL _TO_INPUT 2 Puts all buffers in the input podrhis is
includingthose in the output buffer
gueueand the ones which are currently
being filledand discard entries in the
event data queue.

12 December 2013 Pagell4of 142

GEN<i>CAM i

Version 14 GenTL Standard

Enumerator Value Description
ACQ QUEUE_UNQUEUED TO_INPYy 3 Puts all buffershat are mitherin the
input poolnor being currently filled or
in the output buffer queue in the input
pool.
ACQ_QUEUE_ALL_DISCARD 4 Discards all buffers in the input poahd
the buffers in the output queue includit
buffers currently being filled sthat no
buffer is bound to any internal
mechanism and all buffers may be
revoked or requeued
ACQ QUEUE_CUSTOM_ID 1000 | Starting value for GenTL Producer
custom IDs which are implementation
specific.
If a generic GenTL Consumer is using
customACQ_QUEUE YIPEs provided
through a specific GenTL Producer
implementation it must differentiate thg¢
handling of different GenTL Producer
implementations in case other
implementations will not provide that
custom id or will use a different meani
with it.

6.4.4.2 ACQ_START_FLAGS

enum ACQ_START_FLAGS

This enumeration defines special start flags for the acquisition engine. The function used is
DSStartAcquisition

Enumerator Value Description
ACQ_START_FLAGS_DEFAULT 0 Default behavior.
ACQ _START _FLAGS CUSTOM_ID 1000 | Startingvalue for GenTL Producer
custom IDs.

6.4.4.3 ACQ_STOP_FLAGS

| enum ACQ_STOP_FLAGS

This enumeration defines special stop flags for the acquisition engine. The function used is
DSStopAcquisition

Enumerator Value Description
ACQ _STOP_FLAGS DEFAULT 0 Stop the acgsition engine when the

12 December 2013 Pagell5of 142

GEN<i>CAM i

Version 14 GenTL Standard

Enumerator Value Description

currently running tasks like filling a
buffer are completed (default behavior,

ACQ_STOP_FLAGS KILL 1 Stop the acquisition engine immediate
In case this results in a partially filled
buffer the Producer will return the buff
through the regular mechanism to the
user, indicating through the info functic
of that buffer that this buffer is not
complete.

ACQ _STOP_FLAGS CUSTOM_ID 1000 | Starting value for GenTL Producer
custom IDs which are implementation
specific.

If a generic Genll Consumer is using
customACQ_STOP_FLAGSrovided
through a specific GenTL Producer
implementation it must differentiate the
handling of different GenTL Producer
implementations in case other
implementations will not provide that
custom id or will use aifferent meaning
with it.

6.4.4.4 BUFFER_INFO_CMD

enum BUFFER_INFO_CMD

This enumeration defines commands to retrieve information witlD8®etBufferinfo
function on a buffer handle. In case BUFFER_INFO _CMDs not availak# or not
implemented theDSGetBufferinfo function must return the appropriate error return
value.

Enumerator Value Description

BUFFER_INFO_BASE 0 Base address of the buffer memory
as passed to the
DSAnnounceBuffer function
This is also the address where the
payload within the buffer starts.
Data type: PTR

BUFFER_INFO_SIZE 1 Size of the buffer in bytes.
Data type: SIZET
BUFFER_INFO_USER_PTR 2 Private data pointer casted to an

integer provided at buffer
announcement using
DSAnnounceBuffer or

12 December 2013 Pagell6of 142

GEN<I>CAM

7

Version 14

GenTL Standard

Enumerator

Value

Description

DSAllocAndAnnounceBuffer

by the GenTL Consumer. The
pointer is attached to the buffer to
allow attachment ofser data to a
buffer.

Data type: PTR

BUFFER_INFO_TIMESTAMP

Timestamp the buffer was acquirec
The unit is device/implementation
dependent. In case the technology
and/or the device does not support
this for example under Windows a
QueryPerformanceCountean be
used.

Data type: UINT64

BUFFER_INFO_NEW_DATA

Flag to indicate that the buffer
contains new data since the last
delivery.

Data type: BOOLS

BUFFER_INFO_IS_QUEUED

If this flag is set to truéhe buffer is
in the input poalthe buffer is
currently being filledor the buffer is
in theoutput buffer queudn case
this value is true the buffer is owne
by the GenTL Producer and it can
not be revoked.

Data type: BOOLS

BUFFER_INFO_IS_ACQUIRING

Flag to indicate that the buffer is
currently beindilled with data.
Data type: BOOLS

BUFFER_INFO_IS_INCOMPLETE

Flag to indicate that a buffer was
filled but an error occurred during
that process.

Data type: BOOLS

BUFFER_INFO_TLTYPE

Transport layer technolgghat is
supportedSee string constants i
chapter 6.6.1.

Data type: STRING

BUFFER_INFO_SIZE_FILLED

Number of bytes written into the
bufferthelast time it has been filled
This value is reset to 0 when the
buffer is placed into the Input Buffg
Pool.

If the buffer is incomplete (such as
there are missing packets), otie
number of bytes successfully writte

12 December 2013

Pagell7of 142

GEN<I>CAM

7

Version 14 GenTL Standard

Enumerator

Value

Description

to the bufferarereported. If the
buffer is complete, the number
equals to the size reported through
BUFFER_INFO_DATA_SIZE.
Data type: SIZET

BUFFER_INFO_WIDTH

10

Width of the d#&a in the buffer in
number of pixels. This information
refers for example to the width enti
in the GigE Vision image stream
data leader. For other technologies
this is to be implemented
accordingly.

Data type: SIZET

BUFFER_INFO_HEIGHT

11

Height of the d& in the buffer in
number of pixels as configured. Fo
variable size images this is the ma]
Height of the buffer. For example
this information refers to the height
entry in the GIgE Vision image
stream data leader. For other
technologies this is to be
implemented accordingly.
Data type: SIZET

BUFFER_INFO_XOFFSET

12

XOffset of the data in the buffer in
number of pixels from the image
origin to handle areas of interest.
This information refers for example
to the information provided in the
GIgE Vision imagestream data
leader. For other technologies this
to be implemented accordingly.
Data type: SIZET

BUFFER_INFO_YOFFSET

13

Y Offset of the data in the buffer in
number of lines from the image
origin to handle areas of interest.
This information refers foexample
to the information provided in the
GigE Vision image stream data
leader. For other technologies this
to be implemented accordingly.
Data type: SIZET

BUFFER_INFO_XPADDING

14

XPadding of the data in the buffer
number of bytes. This informatio

refers for example to the informatiq
provided in the GIigE Vision image

12 December 2013 Pagell8of 142

GEN<I>CAM

7

Version 14 GenTL Standard

Enumerator

Value

Description

stream data leader. For other
technologies this is may be
implemented accordingly.
Data type: SIZET

BUFFER_INFO_YPADDING

15

YPadding of the data in the buffer
number of bytes. Tik information
refers for example to the informatiq
provided in the GigE Vision image
stream data leader. For other
thechnologies this may be
implemented accordingly.

Data type: SIZET

BUFFER_INFO_FRAMEID

16

A sequentially incremented numbe
of the frameThis information refers
for example to the information
provided in the GigE Vision image
stream block id. For other
technologies this is to be
implemented accordingly.

The wrap around of this number is
transportation technology depende
For GigE Visionit is (so far) 16bit
wrapping to 1. Other technologies
may implement a larger bit depth.
Data type: UINT64

BUFFER_INFO_IMAGEPRESENT

17

Flag to indicate if the current data i
the buffer contains image data. Th
information refers for example to th
information provided in the GigE
Vision image stream data leader. R
other technologies this is to be
implemented accordingly.
Data type: BOOB

BUFFER_INFO_IMAGEOFFSET

18

Offset of the image data from the
beginning of the delivered buffer in
bytes. Appliesdr example when
delivering the image as part of chu
data or on technologies requiring
specific buffer alignment.

Data type: SIZET

BUFFER_INFO_PAYLOADTYPE

19

Payload type of the data.
This information refers to the
constants defined in
PAYLOADTYPEINFO | DS.
Data type: SIZET

12 December 2013 Pagell9of 142

GEN<I>CAM

7

Version 14

GenTL Standard

Enumerator

Value

Description

BUFFER_INFO_PIXELFORMAT

20

This information refers for example
to the information provided in the
GIigE Vision image stream data
leader. For other technologies this
to be implemented accordingly. Th
interpretation of the pixel fonat
depends on the namespace the pi
format belongs to. This can be
inquired using the
BUFFER_INFO_PIXELFORMAT _|
AMESPACEommand.
Data type: UINT64

BUFFER_INFO_PIXELFORMAT_NAMES

ACE

21

This information refers to the
constants defined in
PIXELFORMAT_NAMSPACE_IDs
to allow interpretation of
BUFFER_INFO_PIXELFORMAT
Data type: UINT64

BUFFER_INFO_DELIVERED_IMAGEHEI

GHT

22

The number of lines in the current
buffer as delivered by the transpori
mechanism. For area scan type
images this is usually the numlmdr
lines configured in the device. For
variable size linescan images this
number may be lower than the
configured image height. This
information refers for example to th
information provided in the GigE
Vision image stream data trailer. F
other technolgies this is to be
implemented accordingly.

Data type: SIZET

BUFFER_INFO_DELIVERED_CHUNKPA

LOADSIZE

23

This information refers for example
to the information provided in the
GigE Vision image stream data
trailer. For other technologies this i
to be implenented accordingly.
Data type: SIZET

BUFFER_INFO_CHUNKLAYOUTID

24

This information refers for example
to the information provided in the
GigE Vision image stream data
leader.

The chunk layout id serves as an
indicator that the chunk layout has
changed ah the application should

12 December 2013 Pagel20of 142

GEN<I>CAM

7

Version 14 GenTL Standard

Enumerator

Value

Description

re-parse the chunk

layout in the buffer. When a chunk
layout (availability or position of
individual chunks) changes since t
last buffer delivered by the

device through the same stream, ti
device MUST change the chunk
layout d. As long as the chunk
layout remains stable, the camera
MUST keep the chunk layout id
intact. When switching back to a
layout, which was already used
before, the camera can use the sa
id again or use a new id. A chunk
layout id value of O is invalidt is
reserved for use by cameras not
supporting the layout id
functionality. The algorithm used tg
compute the chunk layout id is left
guality of implementation.

For other technologies this is to be
implemented accordingly.

Data type: UINT64

BUFFER_INFO_FILENAME

25

This information refers for example
to the information provided in the
GIgE Vision image stream data
leader. For other technologies this
to be implemented accordingly.
Since this is GIigE Vision related
information and the filename in Gig
Vision is UTF8 coded, this filenam¢
is also UTF8 coded.
Data type: STRING

BUFFER_INFO PIXEL_ENDIANNESS

26

Endianness of the mukbyte pixel
data in the buffer. This information
refers to the constants defined in
PIXELENDIANNESS IDs.

Data typeINT32

BUFFER_INFO_DATA_SIZE

27

Size of the data intended to be
written to the buffer last time it has
been filled. This value is reset to 0
when the buffer is placed into the
Input Buffer Pool.

If the buffer is incomplete the
number still reports the fusize of

12 December 2013 Pagel2lof 142

GEN<I>CAM

7

Version 14

GenTL Standard

Enumerator

Value

Description

the original data, including the lost
parts. If the buffer is complete, the
number equals to the size reported
through
BUFFER_INFO_SIZE_FILLED.
Data type: SIZET

BUFFER_INFO_TIMESTAMP_NS

28

Timestamp the buffer was acquirec
in units of 1 ng1 000 000 000 ticks
per second). If the device is
internally using another tick
frequency than 1MHz, the GenTL
Producer must convert the value tqg
nanoseconds.
Data type: UINT64

BUFFER_INFO_DATA_LARGER_THAN |

UFFER

29

If this values is set to true it inchtes
that the payload transferred would
not fit into the announced buffer an
that therefore only parts of the
payload or no payload (depending
the implementation of the GenTL
Producer) is copied into the buffer.
Data type: BOOLS

BUFFER_INFO_CONTAINS CHUNKDATA

30

If this values is set to true it indicat
that the payload transferredntains
chunk data which may be parsed
through a call to
DSGetBufferChunkData
GenTL Consumer.

Data typeBOOL8

or the

BUFFER_INFO_CUSTOM_ID

1000

Starting value for GEFL Producer
custom IDs which are
implementation specific.

If a generic GenTL Consumer is
using custonBUFFER_INFO_CM®
provided through a specific GenTL
Producer implementation it must
differentiate the handling of differe
GenTL Producer implementatioirs
case other implementations will no
provide that custom id or will use &
different meaning with it.

12 December 2013

Pagel22of 142

GEN<I>CAM

3

Version 14 GenTL Standard

6.4.4.5 PAYLOADTYPE_INFO_IDS

enum PAYLOADTYPE_INFO_IDS

This enumeration defines constants to give a hint on the payload type to be expected in the

buffer. These values are returned by a call B&GetBufferinfo with the command
BUFFER_INFO_PAYLOADTYPRHhe interpretation of thEAYLOADTYPE_INFO_ILS is
depending on the TLType of the device which streams the data.

Enumerator

Value

Description

PAYLOAD_TYPE_UNKNOWN

0

The GenTL Producer is not aware
the payload type of the data in the
provided buffer. For the GenTL
Consumer perspective this can be
handled as raw data.

PAYLOAD_TYPE_IMAGE

The buffer payload contains pure
image data. In particular, no chunk
data is attached to the image.

PAYLOAD TYPE_RAW_DATA

The buffer payload contains raw,
further unspecified data. For instar
this can be used to send acquisitio
statistics.

PAYLOAD_TYPE_FILE

The buffer payload conitas data of 3
file. It is used to transfer files, such
as JPEG compressed images, whi
can be stored by the GenTL Produ
directly to a hard disk. The user
might get a hint how to interpret th¢
buffer by the filename provided
through a call to
DSGetBufferinfo with the
command
BUFFER_INFO_FILENAME

PAYLOAD_TYPE_CHUNK_DATA

The buffer payload contains chunk
data which can be parsed. The chu
data type might be reported throug
SFNC or deduced from the
technology thedevice is based on.
This constant is for backward
compatibility with GEV 1.2 and will
be deprecated in the future.

PAYLOAD_TYPE_JPEG

The buffer payload contains JPEG
data in the format described in GE
2.0. The GenTL Producer should

report additionalnformation through
the corresponding

12 December 2013 Pagel23of 142

GEN<I>CAM Fie

Version 14 GenTL Standard
Enumerator Value Description
BUFFER_INFO_CMD commands.
PAYLOAD_ TYPE_JPEG2000 6 The buffer payload contains JPEG

2000 data in the format described
GEV 2.0. The GenTL Producer
should report additional informatior
through the corresponding
BUFFER INFO_CMD commands.

PAYLOAD_TYPE_H264 7 | The buffer payload contains H.264
data in the format described in GE
2.0. The GenTL Producer should
report additional information throug
the corresponding
BUFFER_INFO CMD commands.

PAYLOAD TYPECHUNK_ ONLY 8 The luffer payload contains only
chunk data but no additional
payload.

PAYLOAD TYPE_DEVICE_SPECIFIC 9 The buffer payload contains device

specific data. The GenTL Produce
should report additional informatior
through the corresponding

BUFFER_INFO CMD commands.

PAYLOAD TYPE_CUSTOM_ID 1000 | Starting value for GenTL Producer
custom IDs which are
implementation specific.

6.4.4.6 PIXELFORMAT_NAMESPACE_IDS

enum PIXELFORMAT_NAMESPACE_IDS

This enumeration defines constants to interpret the pixel formats provided through
BUFFER_INFO_PIXELFORMAT

Enumerator Value Description

PIXELFORMAT_NAMESPACE_UNKNOWN 0 |The interpretation of the pixel
format values is unknown to the
GenTL Producer.

PIXELFORMAT_NAMESPACE_GEV 1 |The interpretation of the pixel
format values is referencing@gk
Vision 1.x

PIXELFORMAT_NAMESPACE_IIDC 2 | The interpretation of the pixel
format values is referencing 1IDC
1.x

PIXELFORMAT_NAMESPACE_PFNC BIg 3 | The interpretation of the pixel
format values is referencing PFN(

12 December 2013 Pagel24of 142

GEN<I>CAM Fie

Version 14 GenTL Standard

Enumerator Value Description

16Bit Values

PIXELFORMAT_NAMESPACEBENC 32BIT 4 | The interpretation of the pixel
format values is referenciigFFNC
32Bit Values

PIXELFORMAT_NAMESPACE_CUSTOM_| 1000 | The interpretation of the pixel
format values is GenTL Producer
specific.

6.4.4.7 PIXELENDIANNESS_IDS

enum PIXELENDIANNESS_IDS

This erumeration defines constants describing endianness ot lytdtipixel data in a buffer.
These values are returned by a call to DSGetBufferinfo with the command
BUFFER_INFO_PIXELENDIANNESS.

Enumerator Value Description
PIXELENDIANNESS_ UNKNOWN 0 |Endiannessf the pixel data is
unknown to the GenTL Producer.
PIXELENDIANNESS LITTLE 1 The pixel datas stored in little
endian format.
PIXELENDIANNESS_BIG 2 | The pixel datas stored in big
endian format.

6.4.4.8 STREAM_INFO_CMD

enum STREAM_INFO_CMD

This enumeratio defines commands to retrieve information with Bff@Getinfo function
on a data stream handle.

Enumerator Value Description
STREAM_INFO_ID 0 Unique ID of the data stream.
Data type: STRING
STREAM_INFO_NUM_DELIVERED 1 Number ofdeliveredbufferssince

last acquisition start.
Data type: UINT64

STREAM_INFO_NUM_UNDERRUN 2 Number of losframesdue to
gueue underrun.

This number is initialized with zer
at the time the stream is opened
and incremented every time the
data coulchot be acquired becaug
there was no buffer in the input

12 December 2013 Pagel25o0f 142

GEN<I>CAM

7

Version 14 GenTL Standard

Enumerator

Value

Description

pool.
Data type: UINT64

STREAM_INFO_NUM_ANNOUNCED

Number of announced buffers.
Data type: SIZET

STREAM_INFO_NUM_QUEUED

Number of buffers in the input po
plus the buffer(s) currently being
filled. This does not include the
buffers in the outputjueue. The
intention of this informational
value is to prevent/early detect au
underrun of the acquisition buffer
Data type: SIZET

STREAM_INFO_NUM_AWAIT_DELIVERY

Number of buffers in the output
buffer queue.
Data type: SIZET

STREAM_INFO_NUM_STARTED

Number of frames started in the

acquisition engine.

This number is incremented ever|
time a new buffer is started to be
filled (data written to) regardless

the buffer is later delivered to the|
user or discarded for any reason.
This number is initialized with 0 g
at the time of the stream is opene
It is not reset until the stream is
closed.

Data type: UINT64

STREAM_INFO_PAYLOAD_SIZE

Size of the expected data in byte
Data type: SIZET

STREAMINFO_IS_GRABBING

Flag indicating whether the
acquisition engine is started or n¢
This is independent from the
acquisition status of the remote
device.

Data type: BOOLS

STREAM_INFO_DEFINES_PAYLOADSIZE

Flag that indicating that this data
stream dehes a payload size
independent from the remote
device. Iffalse the size of the
expectedpayload sizes to be
retrieved from the remote device
true the expectegayload sizes
to be inquired from the Data
Stream module.

Data type: BOOLS

12 December 2013 Pagel26o0f 142

GEN<I>CAM

7

Version 14 GenTL Standard

Enumerator

Value

Description

STREAM_INFOTLTYPE

10

Transport layer technolodhatis
supported. See string constants i
chapter 6.6.1.

Data type: STRING

STREAM_INFO_NUMHUNKS_MAX

11

Maximum number of chunks to b
expected in a buffer (can be useq
allocate the array fahe
DSGetBufferChunkData
function). In case this is not know
a priori by the GenTL Producer th
DSGetInfo function returns
GC_ERR_NOT_AVAILABLEThis
maximum must not change durin
runtime.

Data type SIZET

STREAM_INFO_BUF_ANNOUNCE_MIN

12

Minimum number of buffers to
announce. In case this is not kno
a priori by the GenTL Producer th
DSGetInfo function returns a
GC_ERR_NOT_AVAILABLE
error. This minimunmay change
during runtimewhen changing
parameters through the node ma|
Data type: SIZET

STREAM_INFOBUF_ALIGNMENT

13

Alignment sizein bytesof the
buffer pased to
DSAnnounceBuffer.

If a buffer is passed to
DSAnnounceBuffer which is
not aligned according to the
alignment size it is up to the
Producer to either reject the buffe
and return a
GC_ERR_INVALID BUFFER
error code or to cope with a
potential overhead and use the
unaligned buffer as i$n case therg
is no special aligment needed the
GenTL Producer should report a
Data type: SIZET

STREAM_INFO_CUSTOM_ID

1000

Starting value for GenTL Producg
custom IDs which are
implementation specific.

If a generic GenTL Consumer is
using custom

12 December 2013

Pagel27of 142

