|               | GEN <b><i></i></b> CAM |
|---------------|------------------------|
| Version 1.1.0 | GenDC                  |



# GenICam **Generic Data Container Specification** (GenDC)

Version 1.1.0



GenDC



# **Table of Contents**

| Table of Content                                                                     | 2  |
|--------------------------------------------------------------------------------------|----|
| List of Figures                                                                      | 4  |
| List of Tables                                                                       | 5  |
| List of Requirements and Objectives                                                  | 5  |
| History                                                                              | 6  |
| 1 Introduction                                                                       | 7  |
| 1.1 Objectives                                                                       | 7  |
| 1.2 Terms and Definitions                                                            | 8  |
| 1.3 Normative References                                                             | 8  |
| 1.4 Requirements Terminology                                                         | 9  |
| 1.5 Liability Disclaimer                                                             | 9  |
| 2 GenDC Container                                                                    | 10 |
| 2.1 GenDC Container Layout                                                           | 10 |
| 2.1.1 GenDC Container General Layout                                                 | 10 |
| 2.1.2 GenDC Container Headers Hierarchy                                              | 10 |
| 2.2 GenDC Headers                                                                    | 11 |
| 2.2.1 GenDC Container Header Layout                                                  | 12 |
| 2.2.2 GenDC Container Header Description                                             | 13 |
| 2.2.3 GenDC Component Header Layout                                                  | 17 |
| 2.2.4 GenDC Component Header Description                                             | 17 |
| 2.2.4.1 GenDC Component Header Common Fields Description                             | 17 |
| 2.2.5 GenDC Part Header Layout                                                       | 19 |
| 2.2.6 GenDC Part Header Description                                                  | 21 |
| 2.2.6.1 GenDC Part Header Common Fields Description                                  | 21 |
| 2.2.6.2 GenDC Part Header Type Specific Fields Description                           | 22 |
| 2.2.7 GenDC Part Header Types                                                        | 24 |
| 2.2.8 GenDC Part Header Type Specific Fields                                         | 26 |
| 2.2.8.1 Metadata specific Part Header fields                                         | 26 |
| 2.2.8.2 1D Array specific Part type fields                                           | 28 |
| 2.2.8.3 2D uncompressed, JPEG or JPEG2000 compressed image specific Part type fields | 29 |
| 2.2.8.4 H.264 compressed image specific Part Header fields                           | 30 |
| 3 GenDC and Transport Layers                                                         | 33 |
| 3.1 GenDC Typical Transmission and Reception                                         | 34 |
| 3.2 GenDC Flows                                                                      | 34 |
| 3.2.1 GenDC Flow mapping table                                                       | 35 |
| 4 GenDC Container formatting, requirements and recommendations                       | 37 |
| 4.1.1 Requirements and recommendations                                               | 37 |
| 5 Summary                                                                            | 39 |

| ComPC         |                                                       | - emva                     |  |
|---------------|-------------------------------------------------------|----------------------------|--|
| Version 1.1.0 | GenDC                                                 |                            |  |
|               |                                                       |                            |  |
| Appendix A G  | enDC Container Structure overview                     |                            |  |
| A.1 GenDC C   | ontainer typical layout for monochrome or color pa    | acked 2D images 40         |  |
| A.2 GenDC C   | ontainer typical layout for color planar 2D images.   |                            |  |
| A.3 GenDC C   | ontainer typical layout for a multi-Components 3D     | scene                      |  |
| Appendix B Ty | ypical GenDC Containers layout                        |                            |  |
| B.1 1D Array. |                                                       |                            |  |
| B.2 2D Image  | e (monochrome)                                        |                            |  |
| B.3 2D Image  | e (color packed)                                      |                            |  |
| B.4 2D Image  | e (color planar)                                      |                            |  |
| B.5 Multispe  | ctral Image (Intensity of multiple wavelength bands   | s)                         |  |
| B.6 2D Image  | e (Compressed)                                        |                            |  |
| B.7 3D Image  | e (Range, Confidence and Reflectance)                 |                            |  |
| B.8 3D Image  | e (X, Y, Z Planar Point Cloud, Confidence and Reflect | tance) 48                  |  |
| B.9 2D Image  | e Sequence/Burst (Intensity of consecutive frames t   | aken at different time) 49 |  |
| B.10 2D Imag  | ge with multiple regions                              |                            |  |
| B.11 2D Imag  | ge (monochrome Intensity Component with metad         | ata) 51                    |  |
| B.12 3D Scen  | e with metadata (Range, Confidence, Metadata)         |                            |  |
| Appendix C Ge | enDC Container typical transmission scenarios         | 53                         |  |
| C.1 GenDC Co  | ontainer typical streaming using single and multiple  | e data Flows53             |  |
| C.2 GenDC Co  | ontainer typical transmission using in order transfe  | rs54                       |  |
| C.3 GenDC Co  | ontainer typical transmission using out of order tra  | nsfers                     |  |

GEN**<i>**CAM



GenDC



# List of Figures

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Figure 2-2: GenDC Container Descriptor hierarchy in a multi-Components scenario (headers and data chaining)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                   |
| Figure 2-3: GenDC Container Header Layout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                   |
| Figure 2-4: GenDC Component Layout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17                                                                   |
| Figure 2-5: GenDC Part Header Layout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19                                                                   |
| Figure 2-6: GenDC Part TypeSpecific fields general layout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                   |
| Figure 2-7: Part specific Header fields layout for Metadata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                                                   |
| Figure 2-8: GenICam Chunk Part data layout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27                                                                   |
| Figure 2-9: Part specific Header fields layout for 1D Array                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28                                                                   |
| Figure 2-10: Part specific Header fields layout for 2D uncompressed, JPEG or JPEG2000 compressed image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29                                                                   |
| Figure 2-11: Part specific Header fields layout for H.264 compressed image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                   |
| Figure 3-1: GenDC layer and Transport Layer coupled by GenDC Flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33                                                                   |
| Figure 3-2: GenDC typical Transmission and Reception data handling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34                                                                   |
| Figure 3-3: GenDC Flow mapping table layout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35                                                                   |
| Figure 5-1: GenDC Container's typical layout for a monochrome or color packed 2D image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40                                                                   |
| Figure 5-2: GenDC Container's typical layout for a RGB planar 2D image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                   |
| Figure 5-3: GenDC Container's typical layout for a multi-Components 3D scene with Intensity, Range and Metadata.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42                                                                   |
| Figure 5-4: 1D Array (32 bit Integers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43                                                                   |
| Figure 5-5: 2D Image (monochrome 8 hit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40                                                                   |
| rigure 5.5.20 image (monocinome o bit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43                                                                   |
| Figure 5-6: 2D Image (color RGB 32 bit packed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43<br>44                                                             |
| Figure 5-6: 2D Image (color RGB 32 bit packed)<br>Figure 5-7: 2D Image (color RGB planar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43<br>44<br>44                                                       |
| Figure 5-6: 2D Image (color RGB 32 bit packed)<br>Figure 5-7: 2D Image (color RGB planar)<br>Figure 5-8: Multispectral Image (3 wavelength planes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43<br>44<br>44<br>45                                                 |
| Figure 5-6: 2D Image (color RGB 32 bit packed)<br>Figure 5-7: 2D Image (color RGB planar)<br>Figure 5-8: Multispectral Image (3 wavelength planes)<br>Figure 5-9: 2D Image (color JPEG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43<br>44<br>44<br>45<br>46                                           |
| Figure 5-6: 2D Image (color RGB 32 bit packed)<br>Figure 5-7: 2D Image (color RGB planar)<br>Figure 5-8: Multispectral Image (3 wavelength planes)<br>Figure 5-9: 2D Image (color JPEG)<br>Figure 5-10: 3D Scene (range, confidence and reflectance)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43<br>44<br>45<br>45<br>46<br>47                                     |
| Figure 5-6: 2D Image (color RGB 32 bit packed)<br>Figure 5-7: 2D Image (color RGB planar)<br>Figure 5-8: Multispectral Image (3 wavelength planes)<br>Figure 5-9: 2D Image (color JPEG)<br>Figure 5-10: 3D Scene (range, confidence and reflectance)<br>Figure 5-11: 3D Image (XYZ planar point cloud, confidence and reflectance)                                                                                                                                                                                                                                                                                                                                                                       | 43<br>44<br>45<br>46<br>47<br>48                                     |
| Figure 5-6: 2D Image (color RGB 32 bit packed)<br>Figure 5-7: 2D Image (color RGB planar)<br>Figure 5-8: Multispectral Image (3 wavelength planes)<br>Figure 5-9: 2D Image (color JPEG)<br>Figure 5-10: 3D Scene (range, confidence and reflectance)<br>Figure 5-11: 3D Image (XYZ planar point cloud, confidence and reflectance)<br>Figure 5-12: 2D Image Sequence/burst (Intensity)                                                                                                                                                                                                                                                                                                                   | 43<br>44<br>45<br>46<br>47<br>48<br>49                               |
| Figure 5-6: 2D Image (color RGB 32 bit packed)<br>Figure 5-7: 2D Image (color RGB planar)<br>Figure 5-8: Multispectral Image (3 wavelength planes)<br>Figure 5-9: 2D Image (color JPEG)<br>Figure 5-10: 3D Scene (range, confidence and reflectance)<br>Figure 5-11: 3D Image (XYZ planar point cloud, confidence and reflectance)<br>Figure 5-12: 2D Image Sequence/burst (Intensity)<br>Figure 5-13: 2D Image with Regions (Intensity)                                                                                                                                                                                                                                                                 | 43<br>44<br>45<br>46<br>46<br>47<br>48<br>49<br>50                   |
| Figure 5-5: 2D Image (color RGB 32 bit packed)<br>Figure 5-7: 2D Image (color RGB planar)<br>Figure 5-8: Multispectral Image (3 wavelength planes)<br>Figure 5-9: 2D Image (color JPEG)<br>Figure 5-10: 3D Scene (range, confidence and reflectance)<br>Figure 5-11: 3D Image (XYZ planar point cloud, confidence and reflectance).<br>Figure 5-12: 2D Image Sequence/burst (Intensity)<br>Figure 5-13: 2D Image with Regions (Intensity).<br>Figure 5-14: 2D Image (intensity with metadata)                                                                                                                                                                                                            | 43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51                   |
| Figure 5-6: 2D Image (color RGB 32 bit packed)<br>Figure 5-7: 2D Image (color RGB planar)<br>Figure 5-8: Multispectral Image (3 wavelength planes)<br>Figure 5-9: 2D Image (color JPEG)<br>Figure 5-10: 3D Scene (range, confidence and reflectance)<br>Figure 5-11: 3D Image (XYZ planar point cloud, confidence and reflectance)<br>Figure 5-12: 2D Image Sequence/burst (Intensity)<br>Figure 5-13: 2D Image with Regions (Intensity)<br>Figure 5-14: 2D Image (intensity with metadata)<br>Figure 5-15: 3D Scene (range, confidence and metadata)                                                                                                                                                    | 43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52             |
| Figure 5-6: 2D Image (color RGB 32 bit packed)<br>Figure 5-7: 2D Image (color RGB planar)<br>Figure 5-8: Multispectral Image (3 wavelength planes)<br>Figure 5-9: 2D Image (color JPEG)<br>Figure 5-10: 3D Scene (range, confidence and reflectance)<br>Figure 5-11: 3D Image (XYZ planar point cloud, confidence and reflectance)<br>Figure 5-12: 2D Image Sequence/burst (Intensity)<br>Figure 5-13: 2D Image with Regions (Intensity)<br>Figure 5-14: 2D Image (intensity with metadata)<br>Figure 5-15: 3D Scene (range, confidence and metadata)<br>Figure 5-16: Typical GenDC Container's transmission using TL data Flows                                                                         | 43<br>44<br>45<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53 |
| Figure 5-6: 2D Image (color RGB 32 bit packed)<br>Figure 5-7: 2D Image (color RGB planar)<br>Figure 5-8: Multispectral Image (3 wavelength planes)<br>Figure 5-9: 2D Image (color JPEG)<br>Figure 5-10: 3D Scene (range, confidence and reflectance)<br>Figure 5-11: 3D Image (XYZ planar point cloud, confidence and reflectance)<br>Figure 5-12: 2D Image Sequence/burst (Intensity)<br>Figure 5-13: 2D Image with Regions (Intensity)<br>Figure 5-14: 2D Image (intensity with metadata)<br>Figure 5-15: 3D Scene (range, confidence and metadata)<br>Figure 5-16: Typical GenDC Container's transmission using TL data Flows<br>Figure 5-17: Typical GenDC Container's layout and transmission order | 43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54 |



GenDC



# List of Tables

| Table 1-1: Terms and Definitions                                                                          | 8  |
|-----------------------------------------------------------------------------------------------------------|----|
| Table 1-2: Requirements terminology                                                                       | 9  |
| Table 2-1: GenDC Container Header Description                                                             | 16 |
| Table 2-2: GenDC Component Header fields description                                                      | 19 |
| Table 2-3: GenDC Component Header Part common fields description                                          | 22 |
| Table 2-4: GenDC Component Header Part type specific fields description                                   | 23 |
| Table 2-5: GenDC Part Types                                                                               | 25 |
| Table 2-6: Part specific Header fields description for Metadata                                           | 26 |
| Table 2-7: Part specific Header fields description for 1D Array or Image                                  | 29 |
| Table 2-8: Part specific Header fields description for 2D uncompressed, JPEG or JPEG2000 compressed image | 29 |
| Table 2-9: Part specific Header fields description for H.264 compressed image                             | 32 |
| Table 3-1: GenDC Flow mapping table description                                                           | 35 |

# List of Requirements and Objectives

| [ R-001] A GenDC compliant product must use the headers and flags as defined by this specification                                                             | 12           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| [ R-002] A GenDC compliant product must use the Part header types as defined by this specification                                                             | 21           |
| [ R-003] A GenDC compliant transmitter must provide a Flow mapping table (stored in little-endian ordering)                                                    | 36           |
| [ R-004] The GenDC Container Descriptor must be always stored in little-endian ordering                                                                        | 37           |
| [ R-005] Container data Part in PFNC format must use little-endian ordering.                                                                                   | 37           |
| [ <b>R-006</b> ] For Transmission and file storage, a GenDC Container is always represented as a continuous block of line memory starting with the Descriptor. | ar<br>37     |
| [ R-007] The Part's DataOffset is always the offset of the data in bytes from the start of the Descriptor                                                      | 37           |
| [ <b>R-008</b> ] The Part's FlowOffset is always the offset of the data in bytes from the start of the Flow specified by the FlowId.                           | Part's       |
| [ R-009] The Descriptor is always transferred in Flow 0                                                                                                        | 38           |
| [ R-010] A Part must only be mapped to a single Flow.                                                                                                          | 38           |
| [ R-011] Flow must be numbered sequentially starting from 0                                                                                                    | 38           |
| [ <b>R-014</b> ] When storing a GenDC Container using the ".gendc" file extension, the standard GenDC binary format m used.                                    | ust be<br>38 |
| [ R-015] When storing a GenDC Container, a linear Container must be used.                                                                                      | 38           |
| [ R-016] When adding metadata to a Container, this must be done using a separate Metadata Component                                                            | 38           |
| [ <b>CR-012</b> ] If a Container has variable content during the transmission the VariableFields flags of the Container must                                   | st be        |
| set accordingly.                                                                                                                                               |              |
| least just after the transmission of the data section                                                                                                          | it at<br>38  |

| GEN <b><i></i></b> CAM |  |
|------------------------|--|
|------------------------|--|

GenDC



# **History**

This section lists the major milestones of the GenDC specification definition.

| Version       | Date       | Changed by               | Change                                                    |
|---------------|------------|--------------------------|-----------------------------------------------------------|
| Version 0.1   | 2015-03-09 | Stephane Maurice, Matrox | Initial draft of GenSP based on the concept of a TL       |
|               |            |                          | independent, self-described and generic imaging Data      |
|               |            |                          | Container format.                                         |
| Version 0.5   | 2017-04-11 | Stephane Maurice, Matrox | GenSP proposal presented for adoption as a GenICam        |
|               |            | module.                  |                                                           |
| Version 0.7   | 2017-11-10 | Stephane Maurice, Matrox | GenSP renamed to GenDC                                    |
|               |            |                          | Some Headers' field names changed.                        |
|               |            |                          | Notion of data Flow added.                                |
|               |            |                          | Added rules and recommendations.                          |
| Version 0.82  | 2018-08-13 | Thomas Hopfner, MVTec    | General review.                                           |
|               |            |                          | Restructuration of the document chapters.                 |
|               |            |                          | Some Headers' field names and position changed.           |
|               |            |                          | Described the different Descriptor types.                 |
|               |            |                          | Improved Flow notion documentation.                       |
|               |            |                          | Added numbered requirements.                              |
|               |            |                          | Added disclaimer.                                         |
| Version 1.0.0 | 2018-12-10 | Stéphane Maurice, Matrox | Official initial release. Updated the specification and   |
|               |            |                          | requirements according to the conclusion of the Austin    |
|               |            |                          | IVSM meeting and included the corrections received.       |
| Version 1.1.0 | 2020-6-25  | Stéphane Maurice, Matrox | Added GenICam Chunk data detailed encoding description    |
|               |            |                          | and GDC_METADATA_GENICAM_XML Part type.                   |
|               |            |                          | Added reserved GroupId 0xFxxx.                            |
|               |            |                          | Separated Metadata and 1D Part header fields descriptions |
|               |            |                          | in individual chapters.                                   |
|               |            |                          | Added clarifications.                                     |
|               |            |                          |                                                           |



# 1 Introduction

This document describes the Generic Data Container (GenDC) GenICam module. GenDC is Transport Layer neutral, selfdescribed and used to represent, transmit or receive various kinds of data. GenDC targets especially machine vision related image data (such as 2D, 3D, multi-spectral) and metadata (like extra information, histograms and statistics). Besides the GenDC Container layout, this specification also describes the available data types.

A Transport Layer defines how to transport the GenDC Container with the concept of GenDC Flows but it does not know the content of the Container. This allows using and adding data types without touching a particular Transport Layer specification.

# 1.1 <u>Objectives</u>

The GenDC specification is intended to meet the following objectives:

- 1. Define a generic and self-described autonomous Data Container usable for representation, transmission and reception of arbitrary data Components.
- 2. Be Transport Layer agnostic, the Transport Layer is able to transport GenDC as an opaque Data Container without further knowledge.
- 3. Separate the notion of "What" is the data from the way "How" the data is generated or transported as far as feasible.
- 4. Be useable in hardware and software implementations.
- 5. Favor generality, future flexibility and expandability over Transport Layer or media specific definitions.
- 6. Be able to use the same Container layout anywhere in the data manipulation chain from the sensor data encoding to data delivery.
- 7. Define a GenDC Container that is also usable for general data storage.
- 8. Support complex and arbitrary data content (1D, 2D, 3D images, processing results, image sequences/bursts, multispectral, metadata, Mixed content ...).
- 9. Support heterogeneous and independent data Component's members.
- 10. Support multi-plane Components made of individual Parts of various and mixed size data format.
- 11. Support information metadata (such as GenICam chunk data).
- 12. Allow separate transfer and storage of Container Descriptor and data sections.
- 13. Permit reuse of GenDC Container encoder and decoder independent of the Transport Layer protocol.
- 14. Support simple and efficient implementation of encoding and decoding.
- 15. Permit the addition of new data types without requiring any Transport Layer protocol specification update.
- 16. Define a Container structure that supports early processing of data during the reception.



# 1.2 Terms and Definitions

Version 1.1.0

| Name               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component          | A single individual element of a Container. A Component has one Header that describes the Component<br>and includes one Part Header for each of its Part(s). A Component can have one or more Parts that<br>belong together.                                                                                                                                                                                                                                |
| Container          | An object that contains the complete description and data of simple or complex data buffers. A Container has one Descriptor and one or more Components.                                                                                                                                                                                                                                                                                                     |
| Descriptor         | A structure describing the Container's organization and its data. The Container's Descriptor groups the<br>Container Header, all the Component Headers and their associated Part Headers and fully describes the<br>content of the Container including the data Offsets. To support various use cases in the Transport<br>Layers, three kinds of Descriptors are defined: Prefetch, Preliminary and Final Descriptor but they all<br>share the same layout. |
| Flow               | A data transport entity that can carry a Descriptor and/or one or more Components and Parts. Allows mapping of a Container's contents to different memory locations and/or parallel transport of it.                                                                                                                                                                                                                                                        |
| Flow Offset        | The position of a specific Part in a Flow. It is specified in bytes from the Flow start.                                                                                                                                                                                                                                                                                                                                                                    |
| Group              | An ensemble of GenDC Components related together.                                                                                                                                                                                                                                                                                                                                                                                                           |
| Header             | Structure describing a particular member of the Container's Descriptor.                                                                                                                                                                                                                                                                                                                                                                                     |
| Offset             | The position of a specific element in the Container. The Offset is always in bytes from the Container start except the Part's FlowOffset.                                                                                                                                                                                                                                                                                                                   |
| Part               | A Part is the basic constituent of a Component and contains the data.                                                                                                                                                                                                                                                                                                                                                                                       |
| Product            | A functional entity using GenDC.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Transport<br>Layer | An entity transporting the data between receivers and transmitters. It typically handles the transfer and representation of data on a particular physical layer like Ethernet, USB3 or coax cables using a well-defined protocol. Examples of Transport Layers protocol in the context of this specification are GigE Vision <sup>™</sup> , USB3 Vision <sup>™</sup> , CoaXPress <sup>™</sup> and Camera Link HS <sup>™</sup> .                             |

**Table 1-1: Terms and Definitions** 

#### 1.3 Normative References

GenlCam: GenlCam SFNC: GenlCam PFNC: GenlCam PFNC Pixel Format Values: EMVA GenICam Specification EMVA GenICam Standard Features Naming Convention EMVA GenICam Pixel Format Naming Convention EMVA GenICam Pixel Format Naming Convention Pixel format values list.



# 1.4 <u>Requirements Terminology</u>

This specification uses the following convention to list requirements.

| Term                    | Description                                                  | Representation                    |
|-------------------------|--------------------------------------------------------------|-----------------------------------|
| Absolute Requirement    | The product MUST support this requirement. It is mandatory   | [ R- <sn><suffix>]</suffix></sn>  |
|                         | to support it to ensure interoperability.                    |                                   |
| Conditional Requirement | The product MUST support this requirement IF another         | [ CR- <sn><suffix>]</suffix></sn> |
|                         | condition is present. It is mandatory to support it when the |                                   |
|                         | other condition is met.                                      |                                   |

#### Table 1-2: Requirements terminology

A unique number in brackets represents each requirement. Each number is composed of up to three elements:

- 1. Requirement Type: Absolute Requirement, Conditional Requirement.
- 2. Sequence number (sn): Unique number identifying the requirement. The sequence numbers are attributed sequentially as new requirements are added to the specification.
- 3. Suffix: Identifies if the requirement is applicable to application software, transmitters, receivers or some combination of these. Currently not used in this specification.

### 1.5 <u>Liability Disclaimer</u>

This standard is provided "as is" and without any warranty of any kind, expressed or implied. Without limitation, there is no warranty of non-infringement, no warranty of merchantability, and no warranty of fitness for a particular purpose. All warranties are expressly disclaimed.

The user assumes the full risk of using this standard. In no event shall the EMVA, members of the technical committee, or their companies, be liable for any actual, direct, indirect, punitive, or consequential damages arising from such use, even if advised of the possibility of such damages.

GenDC



# 2 GenDC Container

# 2.1 GenDC Container Layout

#### 2.1.1 GenDC Container General Layout

A GenDC Container is a self-described object that holds simple or complex arbitrary data buffers. The basic elements of a Container are the Descriptor and the data section (see Figure 2-1: GenDC Container Descriptor and Data). The Descriptor groups all the Headers describing the Container and the Components (including its Part(s)). In detail, the Descriptor has a Container Header followed by one or more Component Headers where each Component contains a single or multiple Part Headers. The data section consists of all the Part's data.

\* N = Number of Components in the Container, P = Number of Parts in the Component 1, Z = Number of Parts in the Component N.



Figure 2-1: GenDC Container Descriptor and Data

A Container always starts with a unique, single Descriptor located first in the Container. However, to describe various Container transmission scenarios and allow preprocessing, this specification defines three kinds of Descriptors that the Transport Layers can use. All of them share the same layout but are typically sent at different points in time. The **prefetch** Descriptor is available before the streaming starts either from the XML or from the bootstrap registers of the transmitting device and describes all possible Components and Parts that can be received in the following acquisition phase. A Descriptor has to be sent as early as feasible during the acquisition in order to allow preprocessing of the data during the reception of the data. If the Container cannot vary during transmission, this Descriptor is called the **final** Descriptor giving complete and definitive information on the upcoming data. If the Container can vary during transmission a **preliminary** Descriptor should be sent first at the start of the transmission to allow preprocessing and must indicate which fields of the Component and Part Headers might change during transmission. In that case, a **final** Descriptor is sent at the end of the transmission and contains the final description of the Container's data. It shares the offset with the **preliminary** Descriptor and is therefore suitable to overwrite it.

#### 2.1.2 GenDC Container Headers Hierarchy

The Container Descriptor includes a Container Header that points to one or more Component Headers where each Component Header points to its constituting Part Header(s). Each of those Part Headers then points to their

|               | GEN <b><i></i></b> CAM |
|---------------|------------------------|
| Version 1.1.0 | GenDC                  |



corresponding Part's data section.

# Data Container Descriptor Hierarchy (Headers and Data chaining)



Figure 2-2: GenDC Container Descriptor hierarchy in a multi-Components scenario (headers and data chaining) (One Container of three Components with different number of data Parts)

#### 2.2 GenDC Headers

The following subsections describe the Headers in detail. In the Header layout representations, there are fields that are common to all Containers or Components (grey background), fields that are common to all Parts (white background) and Part specific fields (light blue background). For each type of Header, a general layout is presented first giving an overview of the fields' names and placement (64-bit per line) followed by a detailed description of each Header's fields.

|               | GEN <b><i></i></b> CAM |      |
|---------------|------------------------|------|
| Version 1.1.0 | GenDC                  | emva |

[ **R-001**] A GenDC compliant product must use the Headers and flags as defined by this specification.

#### 2.2.1 GenDC Container Header Layout

| Signature =                     | Version        | Version   | Version | Rese      | erved |        |
|---------------------------------|----------------|-----------|---------|-----------|-------|--------|
|                                 |                | Major     | Minor   | Sub Minor |       |        |
| HeaderType                      | Flags          |           | Header  | Size      |       | 1 [    |
| ld                              |                |           |         |           | ] e [ |        |
| VariableFields                  | VariableFields |           |         |           |       | ] .⊆ [ |
|                                 | Dat            | aSize     |         |           |       | ] fa [ |
|                                 | Data           | Offset    |         |           |       | 180    |
| Descripto                       |                | Component | tCount  |           |       |        |
| ComponentOffset[ComponentCount] |                |           |         |           | 1 [   |        |
|                                 |                |           |         |           |       |        |

Figure 2-3: GenDC Container Header Layout



GenDC

# 2.2.2 GenDC Container Header Description

| Width<br>(Bytes) | Offset<br>(Bytes) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4                | 0                 | Signature = "GNDC"<br>Unique signature identifying a GenDC Container: a FourCC code encoded as 4 ASCII<br>characters not null terminated (GDC_SIGNATURE = "GNDC" = 0x43444E47).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3                | 4                 | <ul> <li>Version = Container Descriptor version coded as Major.Minor.SubMinor.</li> <li>(e.g. GDC_VERSION =&gt; 01.00.00 = 0x01,0x00, 0x00 as three consecutive 8 bit fields).</li> <li>The version corresponds to the GenDC specification that the Container complies to.</li> <li>The following versioning rules apply: <ul> <li>The layout of the first 8 bytes of the Container Header will never change in a way that the binary compatibility is broken.</li> <li>The major version is incremented if the layout of Headers changes or major rules change, that break the compatibility.</li> <li>The minor version is incremented if new Components, Parts or flags are added that need to be interpreted.</li> <li>The sub minor version is incremented for clarifications to the standard document.</li> <li>If an implementation supporting a major version of the specification (e.g. 1.0.0), receives a Container with the same major version (e.g. 1.x.x) but a higher minor and/or sub minor version (e.g. 1.1.2), it is guaranteed to be able to interpret the known (1.0.0) Components and Parts.</li> </ul> </li> </ul> |
| 1                | 7                 | Reserved<br>Reserved for future use, set to 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2                | 8                 | Header Type = Unique Header format identifier (Container Header)(GDC_CONTAINER_HEADER = 0x1000).A GenDC Container must always start with a Container Header.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|               | GE | N <b><i></i></b> CA                   | M                              |                                                                       |                                                                                                                                                   |
|---------------|----|---------------------------------------|--------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Version 1.1.0 |    |                                       | GenDC                          |                                                                       | emva                                                                                                                                              |
|               | 10 |                                       |                                |                                                                       |                                                                                                                                                   |
| 2             | 10 | Flags<br>Flags specin<br>information  | fying the cha<br>ı.            | racteristics an                                                       | nd format of the Container. See section 4 for more                                                                                                |
|               |    | Width<br>(bits)                       | Bit offset<br>(lsb << x)       | Description                                                           |                                                                                                                                                   |
|               |    | 1                                     | 0                              | Timestamp                                                             | РТР                                                                                                                                               |
|               |    |                                       |                                | If true, the t<br>epoch Janua<br>1588 format                          | imestamps of the Components are relative to the ary 1, 1970 00:00:00 (TAI) like in the PTP IEEE-                                                  |
|               |    | 1                                     | 1                              | Component<br>If True, Cort<br>Invalid flag<br>using it.<br>An example | tInvalid<br>nponents in the Container might be invalid. The<br>s of each Component must be checked before<br>s use case is a device with a static |
|               |    |                                       |                                | Component<br>they connot                                              | Count but leaving out Components on-the-fly if                                                                                                    |
|               |    | 14                                    | 2                              | Reserved (s                                                           | set to 0)                                                                                                                                         |
|               |    |                                       |                                |                                                                       |                                                                                                                                                   |
| 4             | 12 | HeaderSize<br>Size of the C<br>array. | e = Size of th<br>Container He | e Container I<br>eader in bytes                                       | Header.                                                                                                                                           |
| 8             | 16 | Id<br>Container ic<br>Container.      | dentifier. Str                 | ictly monotor                                                         | ically incrementing by 1 with each transmitted                                                                                                    |
|               |    | Note: Start                           | value and rea                  | set condition                                                         | can be specified by the Transport Layer Protocols.                                                                                                |

| GEN <b><i></i></b> CAM |    |                                                                                                         | M                                                                                                                                                                                                      |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------|----|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Version 1.1.0          |    | (                                                                                                       | GenDC                                                                                                                                                                                                  |                                                                                                                                                                                        | emva emva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |    |                                                                                                         |                                                                                                                                                                                                        |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                      | 24 | VariableFie<br>Flag<br>Com<br>preli<br>cont<br>fully<br>allow<br>If an<br>pref<br>befo<br>Deso<br>In th | elds<br>s specifying<br>tainer recepti<br>iminary infor-<br>rolled acquist<br>w known until<br>w processing<br>by of these fla<br>fetched and n<br>ore the Descri-<br>criptor can be<br>ne final Descr | which type o<br>on. These fla<br>mation, such<br>ition, where<br>the end of th<br>before the co<br>ags is set, the<br>night change<br>ptor can be f<br>e used to star<br>iptor all the | f data information might vary during the<br>ags indicate fields in the Container containing<br>as images acquired from variable scan or trigger<br>the final size or some other information is not<br>ne acquisition. In general these flags are used to<br>omplete Container has been received.<br>Container Descriptor is <b>preliminary</b> or<br>. An updated <b>final</b> Descriptor must be received<br>ully and definitively interpreted. The preliminary<br>t preprocessing of the Container's data.<br>VariableFields flags must be set to 0. |
|                        |    | Width<br>(bits)<br>1                                                                                    | Bit offset<br>(lsb << x)<br>0                                                                                                                                                                          | Description DataSize If True, the become sm                                                                                                                                            | DataSize of the Components' Parts might<br>aller. Note that it is not allowed to become larger                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        |    | 1                                                                                                       | 1                                                                                                                                                                                                      | because the<br>SizeX<br>If True, the<br>might chan                                                                                                                                     | e preliminary DataSize gives an upper limit.<br>SizeX and PaddingX of the Components' Parts                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |    | 1                                                                                                       | 2                                                                                                                                                                                                      | SizeY<br>If True, the<br>might chan                                                                                                                                                    | SizeY and PaddingY of the Components' Parts ge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |    | 1                                                                                                       | 3                                                                                                                                                                                                      | RegionOff<br>If True, the<br>Componen                                                                                                                                                  | Set         RegionOffsetX and RegionOffsetY of the         ts might change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |    | 1                                                                                                       | 4                                                                                                                                                                                                      | Format<br>If True, the<br>This bit car                                                                                                                                                 | Components' Format might change.<br>n only be set in a prefetch Descriptor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |    | 1                                                                                                       | 5                                                                                                                                                                                                      | <b>Timestam</b><br>If True, the                                                                                                                                                        | p<br>Timestamp of the Components might change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| G | E | Ν | < | i> | C | A | Μ |  |
|---|---|---|---|----|---|---|---|--|
|   |   |   |   |    |   |   |   |  |

GenDC



|                       |    | VariableFie                                                                                                                                   | VariableFields (continued)                                    |                                                                                                     |  |
|-----------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|
|                       |    | Width<br>(bits)                                                                                                                               | Bit offset<br>(lsb << x)                                      | Description                                                                                         |  |
|                       |    | 1                                                                                                                                             | 6                                                             | ComponentCount                                                                                      |  |
|                       |    |                                                                                                                                               |                                                               | If True, some Components might not be transmitted.<br>The omitted Components must be the last ones. |  |
|                       |    | 1                                                                                                                                             | 7                                                             | ComponentInvalid                                                                                    |  |
|                       |    |                                                                                                                                               |                                                               | If True, the <b>Invalid</b> flag of certain Components of the Container might change.               |  |
|                       |    | 8                                                                                                                                             | 8                                                             | Reserved (set to 0).                                                                                |  |
| 6                     | 26 | Reserved                                                                                                                                      |                                                               |                                                                                                     |  |
|                       |    | Reserved for future use (set to 0).                                                                                                           |                                                               |                                                                                                     |  |
| 8                     | 32 | DataSize                                                                                                                                      |                                                               |                                                                                                     |  |
|                       |    | Maximum s                                                                                                                                     | Maximum size of the entire Container's data section in bytes. |                                                                                                     |  |
|                       | 10 | Note: Does not include the size of the Container Descriptor.                                                                                  |                                                               |                                                                                                     |  |
| 8                     | 40 | <b>DataOffset</b><br>Offset in bytes of the start of the entire Container's data section relative to the start of the Container's Descriptor. |                                                               |                                                                                                     |  |
| 4                     | 48 | Descriptors                                                                                                                                   | Size                                                          |                                                                                                     |  |
|                       |    | Size of the O                                                                                                                                 | Container Des                                                 | criptor in bytes.                                                                                   |  |
|                       |    | This represents the cumulative size of the Container Header, all the Component<br>Headers and their Part Headers.                             |                                                               |                                                                                                     |  |
| 4                     | 52 | Componen                                                                                                                                      | tCount                                                        |                                                                                                     |  |
| 9                     |    | Number of Components in the entire Container.                                                                                                 |                                                               |                                                                                                     |  |
| Component<br>Count x8 | 56 | ComponentOffset[]                                                                                                                             |                                                               |                                                                                                     |  |
|                       |    | Array of the the start of t                                                                                                                   | e offsets in byt<br>he Container'                             | es of the start of each of the Component Headers relative to s Descriptor.                          |  |
|                       |    | The size of                                                                                                                                   | the array is Co                                               | omponentCount x 8 bytes.                                                                            |  |

Table 2-1: GenDC Container Header Description

GenDC



### 2.2.3 GenDC Component Header Layout

| HeaderType            | Flags                   | Header    | Size      |                                      |  |
|-----------------------|-------------------------|-----------|-----------|--------------------------------------|--|
| Reserved              | GroupId SourceId Region |           | RegionId  | l ui                                 |  |
| RegionOf              | fsetX                   | RegionOf  | ffsetY    | u u u                                |  |
| Timestamp             |                         |           |           |                                      |  |
| TypeId                |                         |           |           |                                      |  |
| Forma                 | at                      | Reserved2 | PartCount | <u> </u> <u></u>   <u></u>   <u></u> |  |
| PartOffset[PartCount] |                         |           |           |                                      |  |

Figure 2-4: GenDC Component Layout

#### 2.2.4 GenDC Component Header Description

#### 2.2.4.1 GenDC Component Header Common Fields Description

| Width<br>(Bytes) | Offset<br>(Bytes) | Description                                                                                                                                        | L                                                                                                                                                                                  |                                                                                                                                                         |  |  |
|------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2                | 0                 | HeaderTyp<br>(GDC_COM<br>A GenDC C                                                                                                                 | <b>HeaderType</b> = Unique Header format identifier (Component Header)<br>(GDC_COMPONENT_HEADER = 0x2000).<br>A GenDC Container must always contain at least one Component Header. |                                                                                                                                                         |  |  |
| 2                | 2                 | Flags<br>Flags specif                                                                                                                              | Flags         Flags specifying the characteristics and format of the Component.         Width       Bit offset         Description                                                 |                                                                                                                                                         |  |  |
|                  |                   | (bits)<br>1                                                                                                                                        | 0                                                                                                                                                                                  | Invalid<br>The Component is invalid and must not be used. If this<br>flag is set the ComponentInvalid flag of the Container<br>Header must be also set. |  |  |
|                  | 4                 |                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                         |  |  |
| 4                | 4                 | Size of the Component Header in bytes including the variable sized PartOffset array.<br>Note the Component's Part Headers are <b>not</b> included. |                                                                                                                                                                                    |                                                                                                                                                         |  |  |
| 2                | 8                 | Reserved =                                                                                                                                         | Reserved for                                                                                                                                                                       | or future use (set to 0).                                                                                                                               |  |  |

|       | GEN <b><i></i></b> CAM |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|-------|------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Versi | on 1.1.0               |    | GenDC                                                                                                                                                                                                                                                                                                                                                                                                                                            | emva                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|       |                        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|       | 2                      | 10 | GroupId<br>Group identifier for a Component in<br>GroupId specifies which Component<br>Components of a particular 3D scen<br>Note:<br>- GroupId 0xFxxx are reserved<br>- GroupId 0xFFFF is reserved<br>Components of the contained                                                                                                                                                                                                               | n the Container.<br>Ints of a Container are related together (e.g. All the<br>ne would have the same GroupId).<br>Ed for future special purpose.<br>I for Components that are related to all the other<br>er independent of their individual GroupId.                                                                                            |  |  |  |
|       | 2                      | 12 | <b>SourceId</b><br>Identifier of the data source that generated the Component.                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|       | 2                      | 14 | <b>RegionId</b><br>Identifier of the data source's region                                                                                                                                                                                                                                                                                                                                                                                        | n that generated the Component.                                                                                                                                                                                                                                                                                                                  |  |  |  |
|       | 4                      | 16 | Note that processing modules can also have a unique region identifier.         RegionOffsetX         X Offset of the region (in pixels).                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|       | 4                      | 20 | <b>RegionOffsetY</b><br>Y Offset of the region (in pixels).                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|       | 8                      | 24 | <b>Timestamp</b><br>Timestamp of the start of the Comp<br>The Timestamp value is represented<br>with only the positive range defined<br>If the TimestampPTP flag of the Co<br>Timestamp value must be relative to<br>of the PTP IEEE-1588-2008 format<br>To transfer time information between<br>the conversions between the time for<br>$t_{GenDC} = t_{PTPNanoseconds} + 10^9 \times$<br>Note: If necessary $t_{GenDC}$ must be saturated to 0 | <pre>bonent's data creation in nanoseconds.<br/>d as a 64-bit signed integer (two's complement)<br/>d.<br/>ontainer Header is set, the Component's<br/>o January 1, 1970 00:00:00 (TAI) like the epoch<br/>t.<br/>n a GenDC Timestamp and PTP IEEE 1588-2008,<br/>rmats can be done using:<br/>&lt; tprpseconds<br/>0x7FFF FFFF FFFF FFFF.</pre> |  |  |  |

|                  | GEN | N <b><i></i></b> CAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |  |  |
|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| Version 1.1.0    |     | GenDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | emva                                                                                       |  |  |
| 8                | 32  | TypeIdComponent type identifier. This numdata represents and is equal to one ofpredefined values.                                                                                                                                                                                                                                                                                                                                                                                                                                 | mber uniquely identifies what type the Component<br>of the SFNC's ComponentIdValue feature |  |  |
| 4                | 40  | Format         Format of the whole Component (including all its Parts).         The value is specified using the standard PFNC's Pixel Format Values list. See the GenICam Pixel Format Naming Convention's "Pixel Format Values" document.         If the Component has only a single Part the Component's Format is the same as the Part's Format. For planar formats it is the encapsulating format (e.g. RGB8_planar).         For the Components that are not pixel based like metadata, the PFNC_Data8 format must be used. |                                                                                            |  |  |
| 2                | 44  | <b>Reserved2</b> = Reserved for future us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | se (set to 0).                                                                             |  |  |
| 2                | 46  | PartCountNumber of Parts in the ComponentsNote that planar Components must                                                                                                                                                                                                                                                                                                                                                                                                                                                        | include one separate Part per data plane.                                                  |  |  |
| PartCount<br>x 8 | 48  | PartOffset[]Array of the offsets in bytes of the sstart of the Containers's Header.The size of the array is PartCount                                                                                                                                                                                                                                                                                                                                                                                                             | start of each of the Part Headers relative to the x 8 bytes.                               |  |  |

Table 2-2: GenDC Component Header fields description

#### 2.2.5 GenDC Part Header Layout

The following figure shows the layout of the Part Headers. In white common fields to all Parts (see section 2.2.6.1) and in blue the fields which are specific to each particular Part Type (see section 2.2.8).

| HeaderType                | Type Flags HeaderSize |          |        |              |
|---------------------------|-----------------------|----------|--------|--------------|
| Forma                     | it                    | Reserved | FlowId |              |
|                           | FlowOf                | fset     |        | ] [          |
| DataSize                  |                       |          |        | ] <u>t</u> [ |
| DataOffset                |                       |          |        |              |
| TypeSpecific 1 (optional) |                       |          |        |              |
|                           |                       |          |        |              |
| TypeSpecific n (optional) |                       |          |        |              |

Figure 2-5: GenDC Part Header Layout

|               | GEN <b><i></i></b> CAM |
|---------------|------------------------|
| Version 1.1.0 | GenDC                  |



Each Part can have multiple 64-bit TypeSpecific fields (shown in blue). For all the Part types defined in this document, these fields are described in the section 2.2.7. In general, if applicable, those TypeSpecific fields should follow a common layout. This common layout illustrated in Figure 2-6, starts with the Parts' dimensions (8 bytes, e.g. for 2D images SizeX and SizeY each 4 bytes), followed by the Parts' padding (4 bytes, e.g. for 2D images PaddingX and PaddingY each 2 bytes) and a reserved field (4 bytes) for future additions. Other optional Part Type specific fields (8 bytes each) can also be present.

| Dimension                 |  |  |  |
|---------------------------|--|--|--|
| Padding InfoReserved      |  |  |  |
| TypeSpecifc 3 (optional)  |  |  |  |
|                           |  |  |  |
| TypeSpecific n (optional) |  |  |  |

Figure 2-6: GenDC Part TypeSpecific fields general layout



#### 2.2.6 GenDC Part Header Description

[ **R-002**] A GenDC compliant product must use the Part header types as defined by this specification.

#### 2.2.6.1 GenDC Part Header Common Fields Description

This table describes the Part's common fields as presented in Figure 2-5: GenDC Part Header Layout.

| Width<br>(Bytes) | Offset<br>(Bytes) | Description                                                           |                                  |                                                        |  |
|------------------|-------------------|-----------------------------------------------------------------------|----------------------------------|--------------------------------------------------------|--|
| 2                | 0                 | HeaderType = Part Type Header format identifier                       |                                  |                                                        |  |
|                  |                   | (GDC_PAR                                                              | T_HEADER                         | = 0x4xxx).                                             |  |
|                  |                   | A GenDC Co                                                            | omponent mus                     | t contain at least one Part Header.                    |  |
|                  |                   | See section 2                                                         | 2.2.7 for the tal                | ble of defined Part types.                             |  |
| 2                | 2                 | Flags = Par                                                           | t specific flag                  |                                                        |  |
|                  |                   |                                                                       |                                  |                                                        |  |
|                  |                   | Flags specif                                                          | fying the char                   | acteristics and format of the Part.                    |  |
|                  |                   | Ean Dont tym                                                          | CDC MET                          | TADATA CENICAM YML                                     |  |
|                  |                   | For Part typ                                                          | Dit offect                       | ADAIA_GENICAM_AML:                                     |  |
|                  |                   | (bita)                                                                | (1  sh (x))                      | Description                                            |  |
|                  |                   |                                                                       | $(ISU \le X)$                    | Decomposition (set to 0)                               |  |
|                  |                   | 8                                                                     | 0                                | Reserved (set to 0).                                   |  |
|                  |                   |                                                                       | 8                                |                                                        |  |
|                  |                   |                                                                       |                                  | The Part XML Data is zipped (compressed) according the |  |
|                  |                   | 1                                                                     | Zip format used for GenICam XML. |                                                        |  |
|                  |                   |                                                                       | 9                                |                                                        |  |
|                  |                   |                                                                       |                                  | The Part XML data can be used for GenICam Chunk data   |  |
|                  |                   | Part decoding.                                                        |                                  |                                                        |  |
|                  |                   | 6 	 10 	 Reserved = Reserved (set to 0).                              |                                  |                                                        |  |
|                  |                   | For all the other Dort tymes                                          |                                  |                                                        |  |
|                  |                   | Width                                                                 | Bit offset                       | Description                                            |  |
|                  |                   | (bits)                                                                | $(lsb \ll x)$                    |                                                        |  |
|                  |                   | 16                                                                    | 0                                | Reserved (set to 0).                                   |  |
| 4                | 4                 | <b>HeaderSize</b> = Size of the Part type specific Header.            |                                  |                                                        |  |
|                  |                   |                                                                       |                                  |                                                        |  |
|                  |                   | Size in bytes of the Part Header including Part Type specific fields. |                                  |                                                        |  |
|                  |                   |                                                                       |                                  |                                                        |  |

| GEN <b><i></i></b> CAM                                                  |    | en <b><i></i></b> cam                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |  |  |
|-------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| Version 1.1.0 GenDC                                                     |    | GenDC                                                                                                                                                                                                                                                                                                                                                                                                                                              | emva                                                                                 |  |  |
|                                                                         | 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |  |  |
| 4                                                                       | 8  | <b>Format</b> = Data format of the Part.                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      |  |  |
|                                                                         |    | The value is specified using the standa<br>GenICam Pixel Format Naming Conve                                                                                                                                                                                                                                                                                                                                                                       | rd PFNC's Pixel Format Values list. See the ention's "Pixel Format Values" document. |  |  |
|                                                                         |    | In general, the Part's Format is identica                                                                                                                                                                                                                                                                                                                                                                                                          | al to its encapsulating Component's Format.                                          |  |  |
|                                                                         |    | For a Component that has a planar format, the Parts of the planar buffer must be ordered according to their encapsulating Component's Format. The Part's Format describes the format of each individual Part/plane of the encapsulating Component (e.g. For a PFNC_RGB8_planar Component, the individual Parts format will be PFNC_R8, PFNC_G8 and PFNC_B8). For Parts that are not pixel based like metadata, the PFNC_Data8 format must be used. |                                                                                      |  |  |
| 2                                                                       | 12 | <b>Reserved</b> = Reserved for future use (se                                                                                                                                                                                                                                                                                                                                                                                                      | et to 0).                                                                            |  |  |
| 2                                                                       | 14 | FlowId                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                      |  |  |
| Unique identifier of the data Flow used to transport and store the Part |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to transport and store the Part's data.                                              |  |  |
|                                                                         |    | Start at 0 and incrementing. See chapter 3 for more information.                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |  |  |
| 8                                                                       | 16 | FlowOffset                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      |  |  |
|                                                                         |    | Offset in bytes of the Part's data in the data Flow used to transport and store the Part's data relative to the Flows' base address.                                                                                                                                                                                                                                                                                                               |                                                                                      |  |  |
|                                                                         |    | The FlowOffset of a Part is equal to the DataOffset of the Part minus<br>the base offset of the Flow in which it is located.                                                                                                                                                                                                                                                                                                                       |                                                                                      |  |  |
|                                                                         |    | Note that the Flow base addresses are not part of the Container Descriptor as the Container must be independent of the actual storage location. This is the same as for the Containers' Descriptor base address which is identical to the base address of Flow 0.                                                                                                                                                                                  |                                                                                      |  |  |
|                                                                         |    | If FlowId=0 it is therefore the same as DataOffset. For other values of FlowId,<br>DataOffset gives the Flows' start address for linear addressing if FlowOffset=0. This can<br>be used to reconstruct a linear Container e.g. for storage.                                                                                                                                                                                                        |                                                                                      |  |  |
| 8                                                                       | 24 | <b>DataSize</b> = Size of the Part's data in by                                                                                                                                                                                                                                                                                                                                                                                                    | ytes.                                                                                |  |  |
|                                                                         |    | Typically the maximum possible data size for a Part. In the final Descriptor the Part's real and valid data size (line scan variable SizeY, compressed image,).                                                                                                                                                                                                                                                                                    |                                                                                      |  |  |
| 8                                                                       | 32 | DataOffset                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      |  |  |
|                                                                         |    | Offset in bytes of the start of the Part's data section relative to the start of the Container's Descriptor for linear addressing.                                                                                                                                                                                                                                                                                                                 |                                                                                      |  |  |

Table 2-3: GenDC Component Header Part common fields description

# 2.2.6.2 GenDC Part Header Type Specific Fields Description

|               | GEN <b><i></i></b> CAM |       |
|---------------|------------------------|-------|
| Version 1.1.0 | GenDC                  | eniva |

This table describes the Part's TypeSpecifc fields as presented in Figure 2-6: GenDC Part TypeSpecific fields general layout. If applicable, those fields should use the following general definition. This permits consistent and easier to interpret Parts headers. In chapter 2.2.8 GenDC Part Header Type Specific Fields, you can find Part specific definitions for those generic fields.

| Width   | Offset  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Bytes) | (Bytes) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8       | 40      | Dimension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |         | Typically the size of the Part (e.g. For 2D images SizeX and SizeY. For 1D array SizeX only).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4       | 48      | Padding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |         | Typically the padding used by the Part (e.g. for 2D images PaddingX and PaddingY. For 1D array PaddingX only).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4       | 52      | InfoReserved<br>For future generic Part info use. Set to 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8xN     | 56      | TypeSpecific fields 3 to N (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |         | Optional fields to be used to further describe the Part if necessary. Note that depending<br>on the Type the above 3 fields might not exist. In that case, the TypeSpecific fields will<br>start from Offset 40 instead. This might especially be true for custom formats. It is<br>however highly recommended to use the general layout starting with Dimension and<br>Padding even for custom Parts since generic software can make use of it. For example<br>even if a specific Part Header type is unknown, but it is a 2D image, a generic software<br>can present the data to the user as raw data but with correct SizeX and SizeY. |

Table 2-4: GenDC Component Header Part type specific fields description



# 2.2.7 GenDC Part Header Types

Version 1.1.0

This section lists the defined Part Header types.

Value = 0x4000-0x4FFF, 4 bits are used for the general category; the following low 8 bits are used for the sub type of a Part. It is possible to specify a custom category (0x4Fxx), which gives 256 possible custom sub types. Besides this, each standardized category supports up to 16 custom sub types (0x4xFx).

| Туре                       | Value  | Description                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GDC_GENERIC_PART_METADATA  | 0x40xx | Generic Metadata Part type.                                                                                                                                                                                                                                                                                                                                                                              |
| GDC_METADATA_GENICAM_CHUNK | 0x4000 | GenICam Chunk Metadata. Binary chunk<br>metadata formatted as specified in the<br>"GenDC metadata Part layout for GenICam<br>Chunk" section below.<br>Note:<br>- Only a Component with a TypeId of type<br>Metadata can contain a Part of type<br>GDC_METADATA                                                                                                                                           |
| GDC_METADATA_GENICAM_XML   | 0x4001 | GenICam Metadata XML. GenICam XML<br>formatted as specified in the GenICam<br>standard.<br>Note:<br>- If the Part XML data is zipped (compressed)<br>or if it is to be used for GenICam chunk data<br>decoding, the Part header <b>Flags</b> field bits<br>"Zip" and "Chunk" must be set accordingly.<br>- Only a Component with a TypeId of type<br>Metadata can contain a Part of type<br>GDC_METADATA |
| GDC_METADATA_CUSTOM(x)     | 0x40Fx | The Metadata Part data is custom and does not<br>correspond to a known Type. It is uniquely<br>identified by the lower 4 bits of this field.                                                                                                                                                                                                                                                             |
| GDC_GENERIC_PART_1D        | 0x41xx | Generic 1D Part type.                                                                                                                                                                                                                                                                                                                                                                                    |
| GDC_1D                     | 0x4100 | 1D array (such as 3D Point Cloud).                                                                                                                                                                                                                                                                                                                                                                       |
| GDC_1D_CUSTOM(x)           | 0x41Fx | The 1D Part data is custom and does not<br>correspond to a known Type. It is uniquely<br>identified by the lower 4 bits of this field.                                                                                                                                                                                                                                                                   |
| GDC_GENERIC_PART_2D        | 0x42xx | Generic 2D Part type.                                                                                                                                                                                                                                                                                                                                                                                    |
| GDC_2D                     | 0x4200 | Rectangular uncompressed image (monochrome or none planar color).                                                                                                                                                                                                                                                                                                                                        |
| GDC_2D_JPEG                | 0x4201 | JPEG compressed Image.                                                                                                                                                                                                                                                                                                                                                                                   |
| GDC_2D_JPEG2000            | 0x4202 | JPEG 2000 compressed Image.                                                                                                                                                                                                                                                                                                                                                                              |

| GE | N | i>( | CAM |
|----|---|-----|-----|
|    |   |     |     |



| GDC_2D_H264      | 0x4203 | H.264 compressed Image.                        |
|------------------|--------|------------------------------------------------|
| GDC_2D_CUSTOM(x) | 0x42Fx | The 2D Part data is custom and does not        |
|                  |        | correspond to a known Type. It is uniquely     |
|                  |        | identified by the lower 4 bits of this field.  |
|                  |        |                                                |
| GDC_CUSTOM(xx)   | 0x4Fxx | The Part data is custom and does not           |
|                  |        | correspond to a known category. It is uniquely |
|                  |        | identified by the lower 8 bits of this field.  |

Table 2-5: GenDC Part Types



#### **GenDC Part Header Type Specific Fields** 2.2.8

This section describes the Part type specific Header fields. The Part type specific fields are used to describe the type of data included in the Part and to provide the information necessary to interpret it. The sub sections below gives the information about each of the in GenDC Part Header Types defined above.

#### 2.2.8.1 Metadata specific Part Header fields

| Size                                 |  |  |  |  |
|--------------------------------------|--|--|--|--|
| Padding PaddingReserved InfoReserved |  |  |  |  |
| InfoTypeSpecific (Reserved)          |  |  |  |  |

#### Figure 2-7: Part specific Header fields layout for Metadata

Note: For Part Type = Metadata, the Component's Format and Part's Format are set to the Data8 PFNC value.

|         | Metadata Part Type specific Header fields |                                                                                                                                                                                                      |  |  |
|---------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Width   | Offset                                    | Description                                                                                                                                                                                          |  |  |
| (Bytes) | (Bytes)                                   |                                                                                                                                                                                                      |  |  |
| 8       | 40                                        | Size                                                                                                                                                                                                 |  |  |
|         |                                           | Size of the 1D Metadata Part (in number of elements according to Part Format).                                                                                                                       |  |  |
| 2       | 48                                        | Padding                                                                                                                                                                                              |  |  |
|         |                                           | Size of the padding at the end of the Part (in bytes).                                                                                                                                               |  |  |
| 2       | 50                                        | PaddingReserved = 0.                                                                                                                                                                                 |  |  |
|         |                                           | Reserved for alignment and future use.                                                                                                                                                               |  |  |
| 4       | 52                                        | InfoReserved = 0                                                                                                                                                                                     |  |  |
|         |                                           | Reserved for future use.                                                                                                                                                                             |  |  |
| 8       | 56                                        | InfoTypeSpecific = 0 or GenICam LayoutId.                                                                                                                                                            |  |  |
|         |                                           | Reserved for future use (0) or set to the Metadata Layout Id for Part of type<br>GDC_METADATA_GENICAM_CHUNK or M_METADATA_GENICAM_XML (See<br>"GenDC metadata Part layout for GenICam Chunk" below). |  |  |

Table 2-6: Part specific Header fields description for Metadata

#### **GenDC Metadata Part:**

A GenDC Metadata Part is a Part containing non pixel based information. There are various types of such data identified by their specific Part Header type.

#### **GenDC Metadata Part layout for GenICam Chunk**

A GenDC Metadata Part of type GDC\_METADATA\_GENICAM\_CHUNK includes GenICam chunk data that are tagged blocks of data separated in individual information chunks identified by a unique chunk identifier. A data block in chunk format is decoded with the help of a GenICam chunk parser and the corresponding GenICam XML. Each individual

|               | GEN <b><i></i></b> CAM |
|---------------|------------------------|
| Version 1.1.0 | GenDC                  |



chunk consists of the chunk data followed by a trailing tag.

The tag contains:

• A unique chunk identifier (4 bytes, little-endian), which identifies the structure of the chunk data and the chunk features associated with this chunk.

• The chunk data length (4 bytes, little-endian). Length is specified in bytes (excluding the tag itself) and must be a multiple of 4.

The chunk tags (chunk identifier and length fields) are headers embedded in the Part's data of the chunk block and their byte order is little-endian.

Example of GenICam Chunk Part data layout:



Figure 2-8: GenICam Chunk Part data layout

#### GenDC Metadata Part Chunk Layout Id for GenICam Chunk

When the chunk layout (availability or position of individual chunks) changes in the chunk data Part, the Chunk "LayoutId" contained in the InfoTypeSpecific field of the GenICam Metadata Part header must change too. As long as the chunk layout remains the same, the Chunk LayoutId should stay identical. When switching back to a layout which was already used before, the same Chunk LayoutId that was used before or a new one can be used. A Chunk LayoutId value of 0 is reserved for Parts not supporting the layout Id functionality.

Note: The GDC\_METADATA\_GENICAM\_CHUNK Part data can be decoded using the GenICam chunk parser class CChunkAdapterGenDC of the GenICam reference implementation.

#### Container with Metadata Component including GenICam Chunk data.

In general, it is recommended that a Container contains only one common Metadata Component including one Part of type GDC\_METADATA\_GENICAM\_CHUNK (and optionally its corresponding GDC\_METADATA\_GENICAM\_XML Part to decode it). The Metadata Component and its Parts Format must be set to PFNC\_Data8. If all the Container's Components have the same GroupId (the most common case), the Metadata Component must use this GroupId too.

If a Container contains many Component groups but the chunk data information about all those groups is located in a single common Metadata Component containing all the GenICam chunk data, then its GroupId must be set to 0xFFFF (which represent "pertains to all GroupId"). In that case, after chunk parsing using GenICam, the XML feature ChunkGroupSelector is typically used to target the information related to each particular group of Components.

GenDC also supports having many Metadata Components in the same Container each containing the GenICam chunk

|               | GEN <b><i></i></b> CAM |      |
|---------------|------------------------|------|
| Version 1.1.0 | GenDC                  | emva |

data of an individual Components group. In that case, the information in each Metadata Component applies only to the other Components sharing the same GroupId and the GenICam chunk parser must be called for each of them to retrieve the information about a particular group.

#### GenDC Metadata Part layout for GenICam XML

A GenDC Metadata Part of type GDC\_METADATA\_GENICAM\_XML is formatted block of XML data respecting the GenICam XML format and its schema.

For those GenICam XML Parts, the Part's header **Flags** field must be used to identify the format and content of XML data of the Part. This can be used for example to specify if the XML is zipped (compressed) or if it is suitable for GenICam Chunk data decoding (see 2.2.4.1 GenDC Part Header Common Fields Description).

Each of the Metadata Components of a Container that has a GDC\_METADATA\_GENICAM\_CHUNK Part can also include a GDC\_METADATA\_GENICAM\_XML Part corresponding to the chunk data of that Component. Or, if suitable to avoid duplication, a common and unique Metadata Component including a single Part of type GDC\_METADATA\_GENICAM\_XML can be provided for all the Components of a Container containing a GenICam chunk metadata Part. This XML can then be used to decode any of the Container's chunk Metadata Parts. In that case, the Component containing the common GenICam XML must have the GroupId 0xFFFF (which represents "pertains to all GroupIds").

When the content (availability or characteristics of individual XML features) changes in the XML data Part, the XML "LayoutId" contained in the InfoTypeSpecific field of the GenICam Metadata Part header must change too. As long as the XML layout remains the same, the XML LayoutId should stay identical.

Note: It is recommended that the sources that support sending GDC\_METADATA\_GENICAM\_XML Parts in a GenDC Container have this functionality configurable and disabled by default (i.e. SFNC feature ChunkXMLEnable = False).

#### 2.2.8.2 1D Array specific Part type fields

| Size                                 |  |  |  |  |  |
|--------------------------------------|--|--|--|--|--|
| Padding PaddingReserved InfoReserved |  |  |  |  |  |
| InfoTypeSpecific (Reserved)          |  |  |  |  |  |

#### Figure 2-9: Part specific Header fields layout for 1D Array

| 1D Array (ex: Point Cloud) Part Type specific Header fields |         |                                                                       |  |
|-------------------------------------------------------------|---------|-----------------------------------------------------------------------|--|
| Width                                                       | Offset  | Description                                                           |  |
| (Bytes)                                                     | (Bytes) |                                                                       |  |
| 8                                                           | 40      | Size                                                                  |  |
|                                                             |         | Size of the 1D Part (in number of elements according to Part Format). |  |
| 2                                                           | 48      | Padding                                                               |  |
|                                                             |         | Size of the padding at the end of the Part (in bytes).                |  |

| GENCAM |
|--------|
|        |
|        |



GenDC

| 2 | 50 | PaddingReserved = 0.                   |
|---|----|----------------------------------------|
|   |    | Reserved for alignment and future use. |
| 4 | 52 | InfoReserved = 0                       |
|   |    | Reserved for future use.               |
| 8 | 56 | InfoTypeSpecific = 0.                  |
|   |    | Reserved for future use (0).           |

Table 2-7: Part specific Header fields description for 1D Array or Image

#### 2.2.8.3 2D uncompressed, IPEG or IPEG2000 compressed image specific Part type fields

| Size              | x | SizeY        |  |
|-------------------|---|--------------|--|
| PaddingX PaddingY |   | InfoReserved |  |

#### Figure 2-10: Part specific Header fields layout for 2D uncompressed, JPEG or JPEG2000 compressed image

| Width   | Offset  | Description                                                                                                                       |
|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------|
| (Bytes) | (Bytes) |                                                                                                                                   |
| 4       | 40      | SizeX                                                                                                                             |
|         |         | X size of the 2D Part (in pixels).                                                                                                |
| 4       | 44      | SizeY                                                                                                                             |
|         |         | Y size of the 2D Part (in pixels).                                                                                                |
| 2       | 48      | PaddingX                                                                                                                          |
|         |         | Size of the X padding at the end of each line (in bytes).                                                                         |
| 2       | 50      | PaddingY                                                                                                                          |
|         |         | Size of the Y padding at the end of the Part (in bytes).                                                                          |
|         |         | Padding Y can be used to align the following Part to specific hardware constraints, e.g. processor specific alignment constraints |
| 4       | 52      | InfoReserved = 0                                                                                                                  |
|         |         | Reserved for future use.                                                                                                          |

Table 2-8: Part specific Header fields description for 2D uncompressed, JPEG or JPEG2000 compressed image



GenDC

# 2.2.8.4 H.264 compressed image specific Part Header fields

| SizeX             |            |                        |     |              |          | SizeY                  |                 |
|-------------------|------------|------------------------|-----|--------------|----------|------------------------|-----------------|
| PaddingX PaddingY |            |                        | ngY | InfoReserved |          |                        |                 |
| Reserved          | ProfileIDC | CS P R LevelIDC<br>F M |     |              | LevelIDC | SpropInterleavingDepth | SpropMaxDonDiff |
| SpropDeintBufReq  |            |                        |     |              |          | SpropInit              | BufTime         |

Figure 2-11: Part specific Header fields layout for H.264 compressed image

|         |         | 2D H.264 Compressed Part Type specific Header fields                   |  |
|---------|---------|------------------------------------------------------------------------|--|
| Width   | Offset  | Description                                                            |  |
| (Bytes) | (Bytes) |                                                                        |  |
| 4       | 40      | SizeX                                                                  |  |
|         |         | X size of the 2D Part (in pixels).                                     |  |
| 4       | 44      | SizeY                                                                  |  |
|         |         | Y size of the 2D Part (in pixels).                                     |  |
| 2       | 48      | PaddingX                                                               |  |
|         |         | Size of the X padding at the end of each line (in bytes).              |  |
| 2       | 50      | PaddingY                                                               |  |
|         |         | Size of the Y padding at the end of the Part (in bytes).               |  |
| 4       | 52      | InfoReserved = 0                                                       |  |
|         |         | Reserved for future use.                                               |  |
| 1       | 56      | Reserved = 0                                                           |  |
|         |         | Reserved for future use.                                               |  |
| 1       | 57      | ProfileIDC                                                             |  |
|         |         | Profile IDC sequence parameter set data attribute as defined by H.264. |  |

|               | GEN <b><i></i></b> CAM |
|---------------|------------------------|
| Version 1.1.0 | GenDC                  |



| 58 | H264Flags                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|    | Flags specifying the characteristics and format of the H.264 Part.                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|    | Width                                                                                                                                                                                                                         | Bit offset                                                                                                                                                                                                                                                                                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|    | (bits)<br>4                                                                                                                                                                                                                   | $\frac{(\text{lsb} << \mathbf{x})}{0}$                                                                                                                                                                                                                                                      | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|    |                                                                                                                                                                                                                               | Ŭ                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                             | Constraint set0_flag, set1_flag, set2_flag, set3_flag sequence parameter set data attribute as defined by H.264.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|    | 2                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                           | PM (Packetization Mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                             | This parameter signals the packetization properties of the H.264 Part. When the value of packetization-mode is equal to zero, the single NAL mode, as defined in section 6.2 of REC3984 is used. When the value of packetization-mode is                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                             | equal to one, the non-interleaved mode, as defined in section<br>6.3 of RFC3984, is used. When the value of packetization-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                             | mode is equal to two, the interleaved mode, as defined in section 6.4 of RFC3984, is used. Other values are reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|    | 2                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                           | <b>RF</b> (Reserved Flags. Set to 0).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 59 | LevelIDC                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|    | level_idc se                                                                                                                                                                                                                  | quence para                                                                                                                                                                                                                                                                                 | meter set data as defined by H.264.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 60 | SpropInter                                                                                                                                                                                                                    | leavingDept                                                                                                                                                                                                                                                                                 | th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|    | This parame                                                                                                                                                                                                                   | eter may be u                                                                                                                                                                                                                                                                               | used to signal the properties of a NAL unit stream. This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|    | parameter is not applicable if the value of the packetization mode is equal to zero or one.<br>Otherwise, it specifies the maximum number of VCL NAL units that precede any VCL                                               |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|    | NAL unit in the NAL unit stream in transmission order and follow the VCL NAL unit in                                                                                                                                          |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 62 | decoding order as per RFC3984. SpronMaxDonDiff                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|    | This parameter may be used to signal the properties of a NAL unit stream. This parameter is not applicable if the value of the packetization mode is equal to zero or one                                                     |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|    | Otherwise, SpropMaxDonDiff is an integer in the range of 0 to 32767 and it is used in                                                                                                                                         |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 64 | the NAL unit de-interleaving process as per RFC3984.                                                                                                                                                                          |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 04 | Shichnein                                                                                                                                                                                                                     | ibuikeq                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|    | This parameter may be used to signal the properties of a NAL unit stream. This                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|    | parameter is not applicable if the value of the packetization mode is equal to zero or one.<br>Otherwise, SpropDeintBufReq signals the required size of the de-interleaving buffer for<br>the NAL unit stream as per RFC3984. |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|    | 58<br>58<br>59<br>60<br>62<br>64                                                                                                                                                                                              | 58H264FlagsFlags specifiedWidth<br>(bits)42259LevelIDClevel_idc set60SpropInterThis parameter is<br>Otherwise,<br>NAL unit in<br>decoding on62SpropMaxi7This parameter is<br>Otherwise,<br>NAL unit in<br>decoding on64SpropDein7This parameter is<br>Otherwise,<br>the NAL unit64SpropDein | 58       H264Flags         Flags specifying the cha         Width<br>(bits)       Bit offset<br>(lsb << x)         4       0         2       4         2       4         2       6         59       LevelIDC         level_idc sequence parar         60       SpropInterleavingDept         This parameter may be u<br>parameter is not applical<br>Otherwise, it specifies th<br>NAL unit in the NAL ur<br>decoding order as per RI         62       SpropMaxDonDiff         This parameter may be u<br>parameter is not applical<br>Otherwise, SpropMaxDo<br>the NAL unit de-interlea         64       SpropDeintBufReq         This parameter may be u<br>parameter is not applical<br>Otherwise, SpropDeintBufReq |  |  |  |

|               | G  |                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                             |  |
|---------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Version 1.1.0 | U  | GenDC                                                                                                                                                                                             | - emva                                                                                                                                                                                               |  |
| 4             | 68 | SpropInitBufTime                                                                                                                                                                                  |                                                                                                                                                                                                      |  |
|               |    | This parameter may be used to signal t<br>parameter is not applicable if the value<br>Otherwise, the parameter signals the in<br>before starting decoding to recover the<br>order as per RFC3984. | he properties of a NAL unit stream. This<br>of the packetization mode is equal to zero or one.<br>hitial buffering time that a receiver must buffer<br>NAL unit decoding order from the transmission |  |

Table 2-9: Part specific Header fields description for H.264 compressed image





GenDC

#### 3 **GenDC and Transport Lavers**

GenDC is agnostic to the Transport Layer and independent of it. To accomplish this, the notion of Flows is introduced as intermediate layer to decouple the Container content description from how it is transported and stored in receivers' memory.



Figure 3-1: GenDC layer and Transport Layer coupled by GenDC Flows

The top layer defines a GenDC Data Container and is the generic representation of a possibly complex data buffer to transmit/receive or that resides in memory. It is made of a group of standardized Headers called a Descriptor that gives the information about the Container itself, the Components and their individual Parts and describes the Container's data. This Container is "what" the device/system needs to generate, transmit, receive, store or manipulate the data. The Container definition and layout is self-described and independent of "how" it can be transported. For transmission the Container must use a linear memory layout. Example: a GenDC Container for 3D multi-Components image data.

GenDC Flows adapt the top and bottom layer. Both layers need to be aware of the Flows. GenDC describes the Flows and the Transport Layer provides means to transfer them. This way, it is possible to have a fully GenDC agnostic Transport Layer which can transport Flows even in parallel without further knowledge of the GenDC Container. The Transport Layer only needs to know how to transport and store Flows. To accomplish this, it is necessary to have a Flow table from the upper layer just giving the FlowID and FlowSize for each Flow in addition to a matching table of Flow base addresses which is given by the user or allocated by the Transport Layer itself. Example: Transfer of the GenDC Container sequential to one base address in one Flow.

The bottom layer is the Transport Layer (not in the scope of GenDC). It transports the GenDC Container as defined in the transport layer protocol based on the transport layer media. It typically takes care of data consistency and any other transport media related mechanism necessary for efficient and reliable data transmission. Example: GigE Vision protocol packets that transmit the GenDC Data Container on Ethernet.



# 3.1 GenDC Typical Transmission and Reception



Figure 3-2: GenDC typical Transmission and Reception data handling

On the transmitter side, the Descriptor is typically encoded first and then passed with the Container's data to a transport layer specific data transmitter to be streamed out (possibly out of order). The receiver typically handles the GenDC Container by a transport layer specific data receiver. The reassembled Container is then passed to a GenDC decoder to be interpreted.

#### 3.2 GenDC Flows

Flows allow the TL specific data transmitter and receiver to work without knowledge of the GenDC Container. Each Flow represents an independent memory transfer with a given size and identification number starting from zero. It is possible to transport the GenDC Container in a single Flow or in multiple Flows. In general, a Flow mapping table as shown in section 3.2.1 is sufficient for a Transport Layer to handle a GenDC Container. The receiver simply allocates buffer space for each Flow and does not need to know what is transported inside.

Arbitrary Parts of a GenDC Container can be transported in parallel to separate memory locations by using GenDC Flows. The relation between the GenDC Container, GenDC Flows and an arbitrary Transport Layer is shown in Figure 3-1. GenDC Flows allow the transport layer to reserve the necessary buffer space. In case the transport layer provides multiple Flows this also supports parallelism. Note that certain Transport Layer, Transmitter or Receiver might have limitations regarding parallelism.

The transfer of a GenDC Descriptor is always done in Flow zero. The GenDC Containers' Part(s) Header provides information about the FlowId and FlowOffset for all individual Parts. This optionally allows sending Parts on other Flows than Flow zero. Besides this, the GenDC Container is agnostic to Flows.



#### 3.2.1 GenDC Flow mapping table

The Transport Layer gets the Flow mapping table that provides the Flow information about the number of Flows and the size of each Flow in a Transport Layer specific way, for example using the device XML or bootstrap registers. The Flow information is static after TLParamsLocked has been set.

| HeaderType          |              | Flags    | HeaderSize |  |
|---------------------|--------------|----------|------------|--|
| VersionMajor        | VersionMinor | Reserved | FlowCount  |  |
| FlowSize[FlowCount] |              |          |            |  |
| ····                |              |          |            |  |

Figure 3-3: GenDC Flow mapping table layout

| Width            | Offset  | Description                                                                                                                                                                 |  |  |
|------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (Bytes)          | (Bytes) |                                                                                                                                                                             |  |  |
| 2                | 0       | <b>HeaderType</b> = Unique Header format identifier (Flow Mapping Table Header)<br>(GDC_FLOW_MAPPING_HEADER = 0x7000).                                                      |  |  |
| 2                | 2       | <b>Flags</b> = Flags specifying the characteristics and format of the Table.                                                                                                |  |  |
|                  |         | Width<br>(bits)Bit offset<br>(lsb $<< x$ )Description160Reserved (set to 0)                                                                                                 |  |  |
|                  |         |                                                                                                                                                                             |  |  |
| 4                | 4       | <b>HeaderSize</b> = Size of the Flow Mapping Table<br>Size of the Flow Mapping Table Header in bytes including the variable sized<br>FlowSize array (i e 16+ FlowCount x 8) |  |  |
| 1                | 8       | <b>VersionMajor</b> = Major Version of this table. Must be set to 1 for this GenDC specification.                                                                           |  |  |
| 1                | 9       | <b>VersionMinor</b> = Minor Version of this table. Must be set to 0 for this GenDC specification.                                                                           |  |  |
| 2                | 10      | <b>Reserved</b> = Reserved for future use (set to 0).                                                                                                                       |  |  |
| 4                | 12      | <b>FlowCount</b> = Number of entries (=Flows) in the table                                                                                                                  |  |  |
| FlowCount<br>x 8 | 16      | FlowSize[]                                                                                                                                                                  |  |  |
|                  |         | Array of the size in bytes of each Flow.                                                                                                                                    |  |  |
|                  |         | The size of the array is <b>FlowCount</b> x 8 bytes.                                                                                                                        |  |  |

#### Table 3-1: GenDC Flow mapping table description

The GenDC Container is transmitted using linear addressing relative to the Container start. The Transport Layer can keep this and assign the Flow base addresses also in a linear way or it can use any other Flow base addresses for

|               | GEN <b><i></i></b> CAM |      |
|---------------|------------------------|------|
| Version 1.1.0 | GenDC                  | emva |

example putting the data to the memory of a graphics card and keeping the Descriptor in normal Host memory. For this, the internal offsets of the GenDC Data Container do not need to be altered; all is done by changing the Flow base addresses which are not part of the Container.

Early processing of Parts transmitted in different Flows can be easily done if the Transport Layer provides an end of Flow notification of some kind. It is highly recommended for each Transport Layer to provide such an end of Flow notification.

[ **R-003**] A GenDC compliant transmitter must provide a Flow mapping table (stored in little-endian ordering).



# 4 GenDC Container formatting, requirements and recommendations

Since the GenDC format is very flexible, it might be suitable to restrict the number of scenarios currently supported in order to simplify and make its usage uniform without restricting its expandability and future usage. This chapter exposes some rules and recommendations that standardize and simplify GenDC encoding, transmission and decoding. Note that none of the possible rules and recommendations below is dictated by the GenDC format itself which aims to be general and flexible. The generic GenDC format targets to be usable in many different scenarios and even outside of the Transmitter to Receiver transmission context.

Each individual Transport Layer Protocol (TLP) supporting GenDC is also free to add its own particular rules and restrictions regarding the GenDC Container transport to simplify the GenDC usage in its particular context. Recommendations can be ignored if necessary but the TLP must not modify or override basic formal requirements stated in the GenDC standard.

#### 4.1.1 Requirements and recommendations

This section describes requirements and recommendations to be compliant with the GenDC specification: The GenDC Containers are always stored in little Endian. This permits to have a unified way to encode and decode a GenDC Container Descriptor and data independently of the CPU, Transport Layer Protocol or context where it is used.

[ **R-004**] The GenDC Container Descriptor must be always stored in little-endian ordering.

[ R-005] Container data Part in PFNC format must use little-endian ordering.

**GenDC Container format and ordering:** In the context of data exchange between a Transmitter and a Receiver, a virtual GenDC Container is always represented as a continuous block starting with a GenDC Descriptor immediately followed by a continuous Container's data section. The DataOffset field represents the offset of the data from the Descriptor start.

[ **R-006**] For Transmission, a GenDC Container is always represented as a continuous block of linear memory starting with the Descriptor.

[ R-007] The Part's DataOffset is always the offset of the data in bytes from the start of the Descriptor.

**GenDC Container transmission Flow(s):** In the context of data exchange between a Transmitter and a Receiver, the data section(s) of a virtual GenDC Container are transmitted using one or more data Flow(s). Flows allow splitting a Container in sections to facilitate parallel transmission. Flows have a FlowId that is numbered sequentially starting with 0. A Flow can contain a Container Descriptor and/or one or more data Parts. The GenDC Descriptor is always sent as early as possible in Flow 0. The Container Descriptor should be sent as soon as possible to provide its information early to the receiver and help decoding and preprocessing of the data. A Flow can carry one or many data Parts but a Part must only be mapped to a single Flow. All the Component's Parts sharing a Flow are mapped in the same order as they are listed in the GenDC Descriptor. Due the support of variable data content and hardware based memory alignment constraints a Container can contain unused memory areas. It is up to the receiver to store the data sections of a Container transported on different Flows separately in a single or multiple target buffers after the transport.

[**R-008**] The Part's FlowOffset is always the offset of the data in bytes from the start of the Flow specified by the Part's FlowId.



[ **R-009**] The Descriptor is always transferred in Flow 0.

[ **R-010**] A Part must only be mapped to a single Flow.

[ **R-011**] Flow must be numbered sequentially starting from 0.

**GenDC variable Container Transmission:** In the context of data exchange between a Transmitter and a Receiver, if a GenDC Container has some elements that are variable (e.g. Component's Size Y, Region X,Y Offset, Data Size Timestamps, Sequence length...), the corresponding flag(s) of the "VariableFields" field of the Container Header must be set. If the "VariableFields" field is not null, a preliminary Descriptor should be sent to describe the characteristics of the maximum Container that will be transmitted. This preliminary Descriptor must represent the maximum size, number of Components and number of Parts that can be sent. Also, for variable Container, a final GenDC Descriptor including updated Container information must be sent immediately after transmission of the Container's data section.

[**CR-012**] If a Container has variable content during the transmission the VariableFields flags of the Container must be set accordingly.

[**CR-013**] If any of the Container's VariableFields flags is set, a final Descriptor must be sent as soon as possible but at least just after the transmission of the data section.

**GenDC Container Storage:** A GenDC Container can be stored on external storage (e.g. as a file). If stored in GenDC binary format, it must use the extension ".gendc" for the filename.

[ **R-014**] When storing a GenDC Container using the ".gendc" file extension, the standard GenDC binary format must be used.

[ R-015] When storing a GenDC Container, a linear Container must be used.

**GenDC Container Metadata:** Metadata related to a Container must be added to the Container as an additional and separate Metadata Component (e.g. A Container including the Components of a 3D scene (Range, Confidence, ... ) with an additional GenICam Chunk Metadata Component to store the 3D scene additional information).

[ **R-016**] When adding metadata to a Container, this must be done using a separate Metadata Component.



GenDC



# 5 <u>Summary</u>

The definition of a Generic Data Container in the context of a GenDC GenlCam module permits to standardize the format of the data buffers transmitted and received by the various present and future Transport Layer Protocol (TLP) standards. Those Transport Layers Protocols are then able to concentrate their effort on implementing efficient, reliable and real-time data transmission over a particular physical media. They are no more affected by the data representation changes and new payload types can be added without TLP specification modifications. The GenDC Data Container is defined and standardized only once by a group of representatives of each TLP. The basic principle of GenDC is to define a layer that decouples "what" to transport from "how" to transport it using a particular media. Also, since the GenDC Container specification defines a self-described data format, it defines at the same time, a standard way to represent almost any imaging related data information and can be used in many different contexts outside of the data exchange between a Transmitter and a Receiver.



# Appendix A GenDC Container Structure overview

GenDC

In this section, a few examples of Container organization are represented. For a more exhaustive list of the Container format for the typical scenarios, see Appendix B.

### A.1 GenDC Container typical layout for monochrome or color packed 2D images.



(Monochrome or color packed 2D image)



Figure 5-1: GenDC Container's typical layout for a monochrome or color packed 2D image





# A.2 GenDC Container typical layout for color planar 2D images.

# **GenDC Data Container typical layout :**

(Color RGB planar 2D Image)



Figure 5-2: GenDC Container's typical layout for a RGB planar 2D image



# A.3 GenDC Container typical layout for a multi-Components 3D scene.

GenDC

# GenDC Data Container typical layout :

(A 3D Scene Container including a color RGB planar Intensity Component, a Range Component and the corresponding metadata chunk Component)





#### Container's Data

Figure 5-3: GenDC Container's typical layout for a multi-Components 3D scene with Intensity, Range and Metadata. (One Container of three Components with different number of data Parts)



# Appendix B Typical GenDC Containers layout

This section contains various examples of GenDC data Container layouts that can be used to represent typical Imaging data payloads.

### B.1 <u>1D Array</u>

1D Array Container including one Component of one data Part made of 32 bit integers.





Figure 5-4: 1D Array (32 bit Integers)

### B.2 2D Image (monochrome)

2D Image Container including one monochrome Intensity Component of one data Part.









#### GenDC

# B.3 2D Image (color packed)

2D Image Container including one color Component that has one color Intensity data Part.

### 2D Image Container (Intensity RGB packed):



Figure 5-6: 2D Image (color RGB 32 bit packed)

### B.4 2D Image (color planar)

2D image Container including one color Component that has 3 monochrome data Parts.



### 2D Image (Intensity RGB planar):

Figure 5-7: 2D Image (color RGB planar)



# B.5 Multispectral Image (Intensity of multiple wavelength bands)

2D Image Container including one Multispectral Component of 3 wavelength planes. The Component has 3 data Parts each containing the data of a specific wavelength. Note that Container format is the same as RGB planar with one Plane/Part per wavelength band.

#### **Multispectral Image planar:**



Figure 5-8: Multispectral Image (3 wavelength planes)

GenDC



# B.6 2D Image (Compressed)

2D Image Container including one color Component that has one JPEG compressed stream data Part.

### 2D Image Container (JPEG):



Figure 5-9: 2D Image (color JPEG)



# B.7 3D Image (Range, Confidence and Reflectance)

3D scene Container including 3 Components of one data Part each. The 3 individual Components can have different pixel formats.

#### 3D Scene (Range, Confidence, Reflectance):



| Component 1 Data Part 1 | Component 2 Data Part 1 | Component 3 Data Part 1 |
|-------------------------|-------------------------|-------------------------|
| (Range)                 | (Confidence)            | (Reflectance)           |

Figure 5-10: 3D Scene (range, confidence and reflectance)



# B.8 3D Image (X, Y, Z Planar Point Cloud, Confidence and Reflectance)

3D scene Container including 3 Components point cloud format. The XYZ Component is planar (3 separate data Parts) and the Confidence and Reflectance Components have one data Part each. The 3 Components can have different pixel formats.

#### 3D Image (XYZ Planar Point Cloud, Confidence, Reflectance):



| `` |                         |                         |                         |
|----|-------------------------|-------------------------|-------------------------|
|    | Component 1 Data Part 1 | Component 1 Data Part 2 | Component 1 Data Part 3 |
|    | (X Mono 32 float)       | (Y Mono 32 float)       | (Z Mono 32 float)       |

Figure 5-11: 3D Image (XYZ planar point cloud, confidence and reflectance)



2D Images Sequence Container including 3 Intensity Components. The Components have one monochrome data Part each and a unique Timestamp.

# 2D Images Sequence (3 consecutive frames with different timestamp)



| Component 1 Time1 Data Part 1 | Component 2 Time2 Data Part 1 | Component 3 Time3 Data Part 1 |
|-------------------------------|-------------------------------|-------------------------------|
| (Intensity)                   | (Intensity)                   | (Intensity)                   |

Figure 5-12: 2D Image Sequence/burst (Intensity)



# B.10 2D Image with multiple regions

2D image Container including 3 regions of Intensity Component. The Components have one region each located at a different X-Y offset and are of different sizes but have all the same source and Timestamp.

#### **2D Images with Regions**



#### **Components Data**

| Component Region1 Data Part 1 | Component Region2 Data Part 1 | Component Region3 Data Part 1 |
|-------------------------------|-------------------------------|-------------------------------|
| (Intensity)                   | (Intensity)                   | (Intensity)                   |

Figure 5-13: 2D Image with Regions (Intensity)



# B.11 2D Image (monochrome Intensity Component with metadata)

A 2D image Container including one Intensity Component of one data Part and one Metadata Component of one data Part (e.g. GenlCam Chunk data).





(Intensity) Figure 5-14: 2D Image (intensity with metadata)



# B.12 3D Scene with metadata (Range, Confidence, Metadata)

3D scene Container including 2 image Components of one data Part each and the Metadata associated to that scene. The 3 Components have different pixel formats.

### 3D Scene with metadata (Range, Confidence, Metadata)



Figure 5-15: 3D Scene (range, confidence and metadata)



# Appendix C GenDC Container typical transmission scenarios

GenDC

This appendix presents some possible scenarios on how GenDC Container could be transmitted on various TLs (for illustration purpose only). Those scenarios are not part of the GenDC Container format definition itself since this specification only target to describe what the Container content is and to be Transport Layer agnostic on the way how it is transported.

C.1 <u>GenDC Container typical streaming using single and multiple data Flows</u>

#### **Typical GenDC Data Container Transmission using Flows:**

(Linear or parallel transmission of one Container including multiple Components)

#### **GenDC Container and single Flow transport:**



Figure 5-16: Typical GenDC Container's transmission using TL data Flows (One Container including multiple Components)



# C.2 <u>GenDC Container typical transmission using in order transfers</u>

# **Typical GenDC Data Container layout and transmission order:**





#### Data transmission

Figure 5-17: Typical GenDC Container's layout and transmission order (One RGB planar image)



# C.3 GenDC Container typical transmission using out of order transfers

# Typical GenDC Data Container layout and out of order transmission:



Data transmission

Figure 5-18: Typical GenDC Container's layout and out of order transmission (One RGB planar image)