GEN<I>CAM <t |

GenCP Standard - % g

GenlCam

GenCP

Generic Control Protocol

Version 1.3

13 March 2019




GEN<I>CAM <t

Version 1.3 GenCP Standard 2 Q

Content
CRANGE HISTOY ...ttt bbbt bbb et e e b bt et et enneene s 7
L. INErOAUCTION .viiiiiic e 8
O B (015 42 2 (o) o L TP P PP PRI 8
| © 10} 1o 5 A TP T TP PR PP P PROPR PRSPPI 8
| TN o 1] 1 ¢ ot APPSO PP PPRRPTR 9
| S o) (0] 1) 1 1 LT PP PTPPRPPPPI 10
L5, REIETEICES ...iieeiiiieiiii ittt b et b et s b e st e e be et e e nbeesnbeeneas 11
1.6. Requirement TermMINOIOZY ........coiiuieiiiiiieiie ettt ene e 11
B B 1c3 11V L3 o) o KPP O RO T PR PP 12
2.1, Device Description FIle.........coiiiiiiiiiiiiiiiieiee e 12
2.2, SN ENCOAING ....iiuiiiiiiiiiii it 12
2.3, Byte and Bit OTder .......ccoviiiiiiiiiiiiiic 12
2.4, GENCP VEISION vttt b et bbb ettt b et b e e 12
2.5, CROC s 13
2.6, LINK toiiiii s 13
B0 B O 11 1 1< DU P ST PT PR 13
2.7.1.  Default Channel ...t 13
3. OPCTALION. ...ttt 14
Bu1. PTOLOCOL .. 14
3.1.1.  Command & Acknowledge MechaniSm ...........ccccccviiiiiiiiiiiiiii 14
3.1.2.  Pending ACKNOWIEAZE.........cccuiiiiiiiiiiiici e 17
3.1.3. Message Channel .........cooiiiiiiiiiii e 19
Bu1i4. FAIIUE .ottt 20
320 HEAEDEAL ...ttt r e ne e 25
3.3 GenlCam FIle ....oooiiiiie e 26
33,10 Manifest Table ..o 26
33,20 REIIIEVAL ..ttt 26
R 0 TR TR 0103151 0] (ST t) (03 s OO RPPR PRI 26
4. PaCKEt LaAYOUL....uiiitiiiiiiciiie e 27
4.1, General Packet Layout .........ccoiiiiiiiiiiiiic e 27

13 March 2019 Page 2 of 75




GEN<I>CAM <t

Version 1.3 GenCP Standard 2 Q

R s (< . QTP O TR PPTUPR PR 29
4.3.  Common Command Data..........cceiuiiiieiiiiiieiie e a e ae s 29
4.3.1. Command Packet LayOuUL.........cccoiiuiiiiiiiiiiiie i 30
4.3.2.  Acknowledge Packet Layout .........ccccooiiiieiiiiiiiciic e 31
433, CommaNd IDS ....ccuiiiuiiiiiiiii i bbb b 35
4.4, Command SPeCific Data........cccoeiiuiiiiiiiiiiiie it 37
4.4.1. ReadMem Command .........c.cocoueiuiiiiiriiieie ettt a e b e e 37
4.4.2. ReadMem ACKNOWIEAZE ........eciviiiiiiiiiiiiciic e 37
4.43.  WriteMem COmMMANd.........coeiieiiiiiiiiiii e n e neennnas 38
4.4.4.  WriteMem ACKNOWIEAZE ........oooviiiieiiiiiiieie e 38
4.4.5. Pending ACKNOWIEAZE. .......coiiiiiiiieiiiieseee e 39
4.4.6. ReadMemStacked Command..........ccoiiuiiiiiiiiiiiieiii e 39
4.4.7. ReadMemStacked ACKNOWIEAZE .......cccvviveiiiiiiiicici e 40
4.4.8. WriteMemStacked Command..........cccoouiriiriiiiiin i 41
4.4.9. WriteMemStacked Acknowledge...........cooeviiiiiiiiiiiii 42
4.4.10. Event Command ..........coccuuiiiiiiiniiieiiiie i 44
4.4.11. Event ACKNOWIEAZE . .......viiiiiiiiieiiiee e 45
T o1 5 b GO P PP PR UPR PR 45
5. Bootstrap REGISTEr MAP ....cccviiiiiiiiiiiii i 46
5.1.  Technology Agnostic Bootstrap Register Map.........cccocvviiiiiiiiiiniiiiecseeee e 46
5.2, StriNG REGISETS ..ooviiiiiiiiiiiiii i 46
5.3.  Conditional Mandatory REZISTEIS.........cccueiiiiiiiiiiii e 46
54, REZISTET IMAD ..oiiiiiiiiiiie ettt 47
541, GENCP VETSION ...ttt ettt ettt e e b e b e e nnn e 49
5.4.2.  Manufacturer NAME .........ccoouiiiiiiiiieiie ittt n e nne e 49
5430 MOl NAME.....ooiiiiiiiiiie et e et 50
544, Family NAME......coocoiiiiiiiiiiiiiii s 50
5.4.5. Device Version (Manufacturer SPECIfiC) .....uevuiiriirriiiiiiiiiiiiie e 51
5.4.6.  Manufacturer INTO ........cooiiiiiiiii e 51
547, Serial NUMDET ...ouviiiiiiii ittt sae e b e neeenee s 52
5.4.8.  User Defined NAME. .......coiuiiiiiiiiiiii ettt nee 52
5.4.9.  Device Capabilify........ccioiiiiiiiieiiieiee e 53

13 March 2019 Page 3 of 75




GEN<I>CAM <t

Version 1.3 GenCP Standard 2 Q

5.4.10.  Maximum Device Response Time (MDRT) .......ccccoeiiiiiiiiiiiiieiic e 54
54.11.  Manifest Table AdAIess .......ooiiiiiiiiiiiiieiie e 56
5412, SBRM AQAIESS ....eeiiiiiiiieiiii ettt 56
54.13.  Device ConfIUIAtiOn ........c.cciueiviiiiiiieiiiie et 57
5.4.14. Heartbeat TIMEOUL .......cceiiiiiiiiiiie ettt ne e 57
5.4.15. Message Channel ID .......oociiiiiiiiiiiiiii e 58
5416, TIMESTAMP ..veirieiiiitieiiet ettt e bbb e et b e nb e nn e 60
5417, Timestamp LatCh......ccooiiiiiiiiii e 61
5.4.18. Timestamp INCTEMENT........ccviiiiiiiiiiii i 62
5419, ACCESS PIIVIIEZE ..ovviiiiiiie e 63
5.4.20.  ProtoCol ENAIANESS .......cceiiiiiiiiiiiiiiiiiiesiie sttt 64
54.21.  Implementation ENIaneSs .......cccociiiiiiiiiiiiiiiiiie i 64
5.4.22.  Device Software INterface Version ...........ccuvuieiieiiieiiie i 65
5.5, GENETIC TADIES ....viiiiiiiie ittt ettt sttt sttt be e b et e et e e sae et e be e re e 65
5.5.1. MANIEST .o 65
Serial Port IMplementations ..........cc.vvviiiiiriiieiiee e 69
O R 237 1510 U (<) S TSP PP PP PRSPPI 69
1.2, Channel ID ......oooioiiiiie ettt 69
1.3, PACKEL SIZE ..ottt 69
1.4, Serial ParamEtersS ......c.ueiiieiiiiiie ittt 69
1.4.1.  Default port parameters.........ccoceiiiiiiiiiiiii i 69
1.4.2.  Changing pOrt PATAIMETETS ......couveiviiiiiiiirieiisee e 69
| T 1< o -1 B 5 (S . O PP UP RSP 71
1.6, Serial POSHIX .ueiiuiiiiiiiii ettt ettt n e neas 71
1.7, Packet faIlUI@....cceeiiiiiii e 71
1.8.  Technology Specific Bootstrap Register Map .........ccccovoiiiiiiiiiiciiiic e 72
1.8.1.  Supported Baudrate............coouiiiiiiiiiiiiiic 72
1.8.2.  Current BaUAIate ........cocueiiiiiiieiii e 74
| T & (< 1 g1 o1 | A TP P RPN 75

13 March 2019 Page 4 of 75




GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

List of Figures

Fig. 1 - Command CyCle .......ooiiiiiiiiiiiiii e 15
Fig. 2 — Pending ACK CYCLe ....oiiiiiiiiiiiiii ittt 17
Fig. 3 — EVENE CYCLe.. ittt 19
Fig. 4 — Command FailUure .........ccooiiiiiiiiiiii e 22
Fig. 5 — ACK FaIlUIE .....oviiiiiiiic e 24
Fig. 7 — General Packet LayOut........c..coiiuiiiiiiiiiiie it 27
Fig. 6 - Serial Parameter Change .........c.ccoviiiiiiiiiiiiieicere e 70

13 March 2019 Page 5 of 75


file:///W:/Docs/GenCP/GenCP_WorkingCopy.docx%23_Toc3363472
file:///W:/Docs/GenCP/GenCP_WorkingCopy.docx%23_Toc3363473
file:///W:/Docs/GenCP/GenCP_WorkingCopy.docx%23_Toc3363474
file:///W:/Docs/GenCP/GenCP_WorkingCopy.docx%23_Toc3363475
file:///W:/Docs/GenCP/GenCP_WorkingCopy.docx%23_Toc3363476
file:///W:/Docs/GenCP/GenCP_WorkingCopy.docx%23_Toc3363477
file:///W:/Docs/GenCP/GenCP_WorkingCopy.docx%23_Toc3363478

GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

Li sfTabFes

TaADIE 1 = ACTONYINS ...ttt e bbbttt e n e nne e 10
Table 2 - EVENt ID ....coiiiiiiiiii 20
Table 3 — GENCP EVENL IDS .....ooiiiiiiiieiiice e 20
Table 4 - Common Command Data ...........ccoviiiiiiiiiiiiii 30
Table 5 - ACKNOWIEdZE 1aYOUL ......ooviiiiiiiii s 31
Table 6 — Status COdeS .......oiviiiiiiiiiiii 34
Table 7 — Command IANTHIET ........viiiiiiiiiiie s 36
Table 8 - ReadMem SCD-FIelds .........cccooiiiiiiiiiiiii s 37
Table 9 - ReadMem Ack SCD-FIelds ........ccoooiiiiiiiiiiiiiiee s 37
Table 10 - WriteMem Command SCD-Fields.........c.ccoiiiiiiiiiiiiiiiiiiii s 38
Table 11 - WriteMem Ack SCD-FIelds .........ccoiiiiiiiiiiiiiiice s 38
Table 12 - Pending Ack SCD-FIelds ........cccviiiiiiiiiiiiiic s 39
Table 13 - ReadMemStacked SCD-FIelds .........ccccoiiiiiiiiiiiiiii s 40
Table 14 - ReadMemStacked Ack SCD-Fields.........cccccvviiiiiiiiiiiii 41
Table 15 - WriteMemStacked Command SCD-Fields .........ccccccooiiiiiiiiiniiiicece 42
Table 16 - WriteMemStacked Ack SCD-Fields ..........ccccooiiiiiiiiiiii 43
Table 17 - Event Command SCD-FIeldsS........c.cciiiiiiiiiiiiiieiic e 44
Table 18 - Event Acknowledge SCD-Fields .........cccccoiiiiiiiiiiiiii 45
Table 19 - Technology agnostic BRIM..........cccuiiiiiiiiiiiiieee s 48
Table 20 - Register GENCP VEISION.......ccciiiiiiiiiiiiiiieii e 49
Table 21 - Register Device Capabilities.........cuecviiriiieiiiiiiieiiee e 54
Table 22 - Register Maximum Device Response Time.........coccevviiiiiiiiiiiiiiie e 55
Table 23 - Register Manifest Table OffSEt .........coocviiiiiiiiiieii e 56
Table 24 - Register Technology Specific Bootstrap Register Map ..........c.ccocvvvviiiiiiiniiiiciiicen, 57
Table 25 - Register Device ConfigUuration ..........ccccvooieriiiiieiiieie e 57
Table 26 - Register Heartbeat TIMEOUL ..........cccciiiiiiiiiiiiiic s 58
Table 27 - Register Message Channel ID ... 58
Table 28 - RegiSter TIMESTAIMP .....ooviiiiiiiiiiiieii e 60
Table 29 - Register Timestamp LatCh ..........ocoiiiiiiiiii s 61
Table 30 - Register Timestamp INCIemMent ............ccoovviiiiiiiiiiii s 62
Table 31 - Register ACCESS PIIVIIEZE.......ccviiiiiicii s 63
Table 32 - Register - Implementation Endianess .............ccooveiiiiiiiniiiiiic e 64
Table 33 — Manifest Table Layout ..........cccvoiiiiiiii s 66
Table 34 - Manifest Entry Layout .........cccooiiiiiiiiiii s 68
Table 35 - Serial PrefiX ....covviiiiie s 71
Table 36 - Serial BRIM .......cccoiiiiiiiiii s 72
Table 37 - Register — Serial — Supported Baudrates ............ccocvviiiiiiiiiic e 73
Table 38 - Register — Serial — Current Baudrate .............cccoviveiiiiiiieiiiieee e 74

13 March 2019 Page 6 of 75



Version 1.3

GEN<i>CAM t(i
(o

GenCP Standard - Q s

Change

story

Version

Date

Description

1.0

15t Version

1.1

Oct 2014

Clarification of RequestAck bit.

Added MultipleEvents per Event Command description including capability and enable
bit.

Clarify command execution on request_id =0

Clarify that acknowledges on corrupt command packets

Make Heartbeat for devices using GenCP over a serial link mandatory to allow baud
rate switching

1.2

Feb 2016

Renaming of Filetypes to Fileformats and adding new Filetypes for Buffer-XML.
Moving all Serial-Link based paragraphs to an appendix

Removing link to U3V

1.3

June 2018

Stacked RW access
Clarification of register Device Version
Added register Device Software Interface Version

13 March 2019 Page 7 of 75




GEN<I>CAM >3
Version 1.3 GenCP Standard 4’&

1.l ntroducti on

1.1. Moti vati on

Products, which rely on a serial link for communication, implement a wide variety of proprietary
control protocols. Most of these protocols are based on ASCII command strings and ASCII
responses or even binary protocols. Proprietary protocols can be integrated into GenlCam through
the GenlCam CLProtocol module, assuming the device manufacturer provides a dynamic link
library (DLL) for all supported platforms/operating systems. This DLL does the translation between
the camera-specific proprietary control protocol and a GenlCam compliant register map, which
allows the integration of a device into GenIlCam.

Providing a manufacturer-specific and platform-specific DLL adds cost and effort:
9 It has to be maintained for various platforms and OS versions.
1 Device features must be added and updated
1 The integration of embedded platforms must be taken into account

A more straightforward approach is to provide a read/write register protocol, which can also run on
a serial link and do the register map integration in the camera. There would be only one place to
change, the camera firmware, in order to introduce new features. There would be n @latform-
specific software needed, which would allow the use of embedded devices as the controlling host.
This protocol can be packet based and therefore used on other packet-based technologies as well.

Some devices on the market implement serial protocols in a similar way already. The idea is to
propose a common approach for implementing a protocol to give new implementers a hint and
maybe to allow a de facto standard in the future.

The original idea was to simplify the CLProtocol implementation by providing a protocol
description. Because a protocol can potentially be used on other technologies as well, the definition
is kept more generic. It can be adjusted to other technologies however the serial link of Camera
Link was the first approach.

1.2. Objective

The objective of this document is to describe
1 apacket-based protocol to read and write registers in a register-based device
1 aBootstrap Register Map (BRM) to provide basic device information
1 access to the device’s GenlCam file
1

the technology specific communication configuration

13 March 2019 Page 8 of 75



GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

For example, an ASCII based serial link protocol could be used in the generic CLProtocol module
to communicate with a manufacturer’s device over the Camera Link’s serial link. At boot up, the
generic CLProtocol module would allow the configuration of the serial link. A “generic” software
could download the GenICam file by accessing the camera’s registers. The software can then
provide native GenlCam (like GigE Vision) access to the device without the need for the camera
vendor to provide a platform/operating system-specific software running on the host, implementing
the translation between GenlCam register access and manufacturer proprietary protocols.

1.3. Abstract

The protocol is packet based. It follows a simple command/acknowledge scheme to provide resend
and timeout capabilities, adding minimum overhead.

The Bootstrap Register Map (BRM) resides in a 64-bit register space. The 64 Kbytes starting on
address zero contain technology agnostic information like manufacturer name, model name, etc.,
and provide a directory for technology specific settings.

In order to locate the GenlCam file for a device, software would need to retrieve a list of available
GenlCam files, called the manifest, from the device’s register map. The software would then pick
the best fitting GenlCam file from the list and access via the device’s register map.

13 March 2019 Page 9 of 75



GEN<I>CAM

=

R

Version 1.3 GenCP Standard
1.4. Acronyms
Name Description

BRM Bootstrap Register Map

ABRM Technology Agnostic Bootstrap Register Map

SBRM Technology Specific Bootstrap Register Map

Device Device to be controlled, can be any entity, may not be
a camera

Host Controlling Master, can be any entity, may not be a PC

Link Connection between a device and a host.

Channel Logic communication channel between two entities. A
Channel is always unidirectional.

Datagram A single GenCP packet.

Entity Either the Device or the host

DRT Device Response Time
The time a device needs to process a command not
including the transfer time for the packet containing
the command.

PTT Packet Transfer Time
Time to transfer a message/command over a link at a
given link speed.

URL Uniform Resource Locator

CCD Common Command Data
Section within a GenCP command packet which is
common to all commands.

SCD Specific Command Data

Section within a GenCP command packet which is
specific to a given command.

Table 1 - Acronyms

13 March 2019

Page 10 of 75



GEN<I>CAM P

%

Version 1.3 GenCP Standard
1.5. Ref erences
Camera Link AJA Camera Link
GigE Vision AIA GigE Vision
GenlCam EMVA GenlCam
RFC3986 URL
RFC791 Internet Protocol

1.6. Requir eflmamti nol ogy

Version 1.3 of this document does not yet define a requirement scheme even though it is planned to
apply that in future.

13 March 2019 Page 11 of 75



GEN<I>CAM >3
Version 1.3 GenCP Standard 4’&

2.Deftiinons

2.1. Device Description File

Device Description File means a GenlCam compliant XML file describing the register space of a
device.

2.2. String Encoding

All strings are encoded in ASCII, UTF8 or UTF16 depending on the BRM setting. The endianess of
the characters in an encoded string must match the endianess of the containing register map. Strings
defined in the bootstrap register map must follow the endianess of the GenCP Protocol. Strings in
the device’s register map must follow the implementation endianess.

2.3. Bytaend @rider

The order and size of fields within packets are not depending on the endianess used. Fields are
listed with its byte offset relative to the start of the section within a packet. All fields are byte
aligned.

The endianess of all fields in GenCP protocol packets is technology specific and it must match the
endianess of the bootstrap registers of the device.

This document does not define or use explicit bit numbers but identifies bits by its offset to the least
significant bit. This notation is endian agnostic even though the offset matches the bit numbers of
little-endian notations.

The endianess of the non-bootstrap registers is device implementation specific.
For reference, the byte order is described in Appendix B of RFC791.

Unless explicitly stated for a given technology the endianess for GenCP-Implementations is big-
endian.

2.4. GenCP Version

The GenCP version this document describes is
Major Version Number 1

Minor Version Number 3

13 March 2019 Page 12 of 75



GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

A change in the Major Version Number indicates a significant feature change and a potential break
in backward compatibility.

A change in the Minor Version Number indicates minor feature changes, bug fixes, text
clarifications and assures backward compatibility.

2.5. CRC

The CRC checksum used on the packets depends on the underlying technology. If the underlying
technology already provides a CRC, that service is used. If the underlying technology does not
provide a CRC, the checksum is defined in the Appendix.

2.6. Li nk

A link is the physical end to end connection between a device and a host used for control
communication. For example, for Camera Link Medium, despite the fact that there are two cables
carrying data, there is only one serial link for the RS232 communication.

Each link can carry multiple logical communication channels. GenCP assumes a single link
between a host and a device.

2.7. Channel

A channel is a logical communication path between two entities communicating over a link. There
may be multiple logical channels on a single link. Each channel is identified by a unique id number.
This number is used in the communication between two entities to identify the channel a packet
belongs to. This is either part of the protocol layers below the protocol described here or in the
PacketPrefix (see chapter 4.2), depending on the technology. This number is called “channel id”. A
channel’s communication is unidirectional, meaning that on a single channel, the sender and
receiver side for commands and the sender and receiver side for acknowledges are fixed. Different
logical channels may have different directions. The protocol also defines packet layouts and the
communication scheme between a device and a host. This document assumes that for the master
control channel the host is the command sender and the device is the command receiver even
though the roles may change in real live.

271.Def aul t Channel

The default channel (first control channel) is technology dependent. For example, on Ethernet this
would be a port number. For another technology it might be an arbitrary number.

13 March 2019 Page 13 of 75



GEN<I>CAM >3
Version 1.3 GenCP Standard 4’&

3.Operati on

3.1. Protocol

31.1.Command & Acknowl edge Mechani sm

The protocol uses a command/acknowledge pattern. On each channel each entity has a defined role
of being either a “command sender and acknowledge receiver” or a “command receiver and
acknowledge sender”. It is defined in the BRM which channel acts as a command channel from the
host to the device, and which channel is used for the opposite direction from the device to the host.
The command sender sends a command and waits for the acknowledge packet. The command
receiver receives the command, acts according to the command, and sends the acknowledge packet
with the result.

The communication on the default communication channel defines the role of an entity. The sender
of a command on the default communication channel is called the host. The command receiver on
the default communication channel is called the (remote) device.

A command packet contains a number called ¢ 0 mma nwehichi spikcifies the action to be
executed by the receiver and some additional data to be used when executing the command. The
command receiver is expected to process the command and return the result to the sender of the
command using an acknowledge packet.

There are commands which always need an acknowledge packet (for example ReadMem) and
commands where the acknowledge packet is optional (for example WriteMem). The demand for an
acknowledge packet is indicated by a bit in the command packet. In case no acknowledge packet is
requested, it is recommended for the command sender to wait the Maximum Device Response Time
before the next command is sent.

All commands on a channel are sent sequentially. After a command has been sent, the command
sender must wait for an acknowledge packet if requested or wait for a timeout and process the
failure before the next command may be sent.

Each command is sent with a sequentially incremented request id. This id allows resending a
command in case of a failure. A successful communication would follow this schema:

13 March 2019 Page 14 of 75



GEN<i>CAM P

Version 1.3 GenCP Standard

%

Sender Receiver
Command Command
[ req_id j :) [ req_id J

Command

Execute

Command Ack Command Ack
[ req id ] (— [ req. id ]

Command
req id+1

Fig. 1 - Command Cycle

One entity, such as the host, sends a command with a givenr e g u etsthe othiertntity, such as
the device, on a channel. The device processes the command, if requested forms an acknowledge
packet and sends that back to the command sender. Command and acknowledge must have the same
request_id. After the completion of a cycle, a differentr e ¢ u ensust be usadl for the next cycle. It
is up to the implementation to pick itsr € q u eIsid recdmthended that at the start of a
communication the command sender starts withare q u e s 0 andiindrements it by 1 with every
new command cycle. If ther e q u ewsaps aroumld, it is reccommended to wrap to 1 in order to
prevent a second use of r € q U e=9).tIn casedthe samer e q U eisrdceived d second time in
consecutive commands the device should either send a pending ack (see below), if the command is
still being processed, or resend the acknowledge in case the final ack for the original command has
already been sent.

The exception to the just described “acknowledge resend” ruleisr € q u e=.tForf € q U eeDt _

it is only allowed to send read commands (for example reading the GenCP Version registers) which

do not change the device state. This read command must always be executed becauser € q U et _

and a new ack is to be sent. The data being sent must not come from an “old” cache. In case a

r e g u e=9 fs seit @ntaining a write command the device must return a
GENCP_INVALID PARAMETER status code. Since the host application does not necessarily
know which register changes the device’s state it is recommended to read register 0 (GenCP

13 March 2019 Page 15 of 75



GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

Version) for that.

This is to prevent that with the start of a communication an applicationusesr € q u eeDtnd i d
sends just 1 command. Then a second application would also start a new communication and would
againuser € q u e=9).tIn this dase it needs to be ensured that the second communication does not
get an “old” ack.

The round trip time for a command and the according acknowledge is
Command Transfer Time + Processing Time + Acknowledge Transfer time
When calculating the timeout time for the command cycle, a host must therefore consider:
- the transfer time of the maximum packet size on a given link speed
- the Maximum Device Response Time, which is provided via a bootstrap register
- some margin for technology-dependent delays, which may occur on the link

Reading the Maximum Device Response Time (MDRT) register should not exceed 50 ms in order
to guarantee a responsive device. The maximum device response time for any other read or write
operation should not exceed 300 ms. This plus the maximum packet transfer time allows the host to
calculate a timeout value.

13 March 2019 Page 16 of 75



GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

3122Pendi ng Acknowl edge

In case the processing of a command takes longer than specified in the Maximum Device Response
Time register, the command receiver must send a pending acknowledge. This pending acknowledge
response uses the same I € g u eastlie comrdand, which triggered it, and provides a temporary
timeout in milliseconds to be used only with the command currently executed. The command
sender can then temporarily adjust its acknowledge timeout for the current cycle. In case the
command receiver has the heartbeat enabled it has to suspend its heartbeat mechanism so that the
device does not lose connection. In case the execution of the command takes longer than signaled

through an already sent pending acknowledge, the command receiver may issue another pending
acknowledge indicating a new, longer timeout.

Sender Receiver

Command Command
[ req_id j <:) [ req_id J

Pending Ack Pending Ack
E

b

Command Ack Command Ack
( req id ] (—— [ req id ]

Adjust
Timeout

(O——FExecute Command——@)

Command
req id+1

Fig. 2 — Pending Ack Cycle

In case the device receives a further command packet while processing a command, it reacts as
follows:

13 March 2019 Page 17 of 75



GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

- Ifthe new command has the same r e q u eastlie comrdand currently processed, another
pending acknowledge packet is sent. In this case the pending acknowledge timeout from the
original command is used.

- Ifthe new command has a differentr e q u etlg tlevide @dsponds with a GENCP_BUSY
status code.

The Processing Time for the inquiry of the Maximum Device Response Time register must not take
longer than 50ms.

After the cycle finishes, the host timeout resets to the previously calculated timeout using
Maximum Device Response Time and the heartbeat mechanism in the device works as configured
before.

13 March 2019 Page 18 of 75



GEN<I>CAM

Version 1.3 GenCP Standard

s

313.Message Channel

A Message Channel allows the asynchronous transfer of event commands from the device to the
host. For each Message Channel a different channel id from the default channel must be used.

Receiver Sender
Event Event
req_id — req_id

event_id event_id

5
i
4
Q
o
j)

Event Ack C::) Event Ack

req_id req_id

j

O—Next Event—Q)

Event
reg id+1
event_id

Fig. 3 — Event Cycle

The channel id to be used by the Message Channel is set by the host in the according register in the
device’s BRM. Multiple events can be transmitted in one event command. A single Event is
identified by an e v e n An Evet may be accompanied by additional event data. Subsequently
sent event commands are identified by r € g u e.®ie entity ssich as the device, sends an event
command with a givenr e ( U etsthe otlier@ntity, such as the host, on a channel. The host
acknowledges the event packet by sending an EventAck command back to the device. The event
packet and the corresponding acknowledge must have the same r e q u e After thé completion of
a cycle, a differentr e g u ef@ the néxtctycle must be used. Ther e q u efdléws thedchema

described in section 3.1.1.

13 March 2019

Page 19 of 75




=

GEN<I>CAM 2
Version 1.3 GenCP Standard 4’&

3131. Event | D

The source of an event on the Message Channel is identified by an event id. An event id is a 16-bit
value. The bits in this value have the following meaning:

Bit offset | Width | Description
(Isb <<x) | (bits)

0 12 9pSyu L5

12 2 wSaSNIUSR
Setto 0

14 2 bl yYSaLl OS

0 = GenCP Event ID
1 = Technology specific Event ID

2 = Device specific Event ID
Table 2 - Event ID

3.1.3.2.GenCBPventColdl® s

Event ID (Hex) |Name Description

0x0000 Error Generic Error Event
Table 3 — GenCP Event IDs

314 Fai |l ur e

A failure on the Command Channel or the Message Channel is discovered through
1 acorrupt CCD of a command or acknowledge packet
1 atimeout waiting for an acknowledge
1 aninvalid (too short) packet (timeout waiting for the complete arrival)

1 anincorrect packet header

3141. Corrupt Packet

A packet is corrupt if the transmission of the packet failed (e.g. a transmission failure caused the

13 March 2019 Page 20 of 75



GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

CRC of the packet to be wrong or the sender sent the wrong CRC) or if it is too short to carry a
correct CCD plus Prefix. In this case the received data is discarded and no answer is sent back to the
sender.

The receive buffer should be flushed until no data is received within a maximum packet transfer
time or longer.

9 The sender must wait after a communication error until all corrupt data is removed and then
it sends its command again.

9 The receiver discards all corrupt data after a communication error and waits for the sender
to resend its command.

1 If the underlying technology controls packet handling, it is not necessary to wait for a packet
transfer time on failure.

1 There is no acknowledge carrying a failure status code in order to prevent the link being
flooded with garbage acknowledges.

In case the received Prefix and CCD is correct the receiver must answer as requested with an
appropriate status code and the originator can resend the command.

When there are errors on either side, the original command packet is resent from the sender as
described in chapter 3.1.4.3.

In case of failure the sender should retry 3 times to transmit the packet.

3142. Ti meout

A packet is considered “too short” if the data for a packet has not completely been received within
the Packet Transfer Time (PTT) after the first byte of the packet has arrived. The PTT is depending
on

- the link speed
- the maximum packet size allowed on the link

- the timeout for the transfer of two consecutive bytes on a link

If an error occurs on either side, the original command packet is resent from the sender as described
in chapter 3.1.4.3 .

In case of failure, the sender should retry 3 times to transmit the packet.

13 March 2019 Page 21 of 75



=

GEN<I>CAM

GenCP Standard

..
!

-3

Version 1.3

3143. Commnda ®Pkati | ur e

If the command packet is lost on the link or if the command packet is received as corrupt the
following actions are supposed to happen:

Sender Receiver

[ e ] —)

CommandResend
Bit isset
Command Command
[ req id ] (——) [ req id ]

T
b

Command Ack Command Ack
[ req_id ] V: [ req_id ]

Command
reg_id+1

Fig. 4 — Command Failure

Execute
Command

The command is resent after the timeout period with the CommandResend bit being set. The

13 March 2019 Page 22 of 75



GEN<I>CAM >3
Version 1.3 GenCP Standard 4’&

request_id is the same as with the original command.

There is a corner case if the device was opened and only one single command was sent or if the
request id got a wraparound to 0, the device was closed and a new application starts with
request_id being 0. In this case the CommandResent bit would not be set but the receiver should not
discard the command. Therefore, commands with request id equals 0 must always be read and must
always be executed.

If a received command is invalid (combination of command and flags) or is not supported/unknown
by the receiver but at least the CCD is correct (guaranteed by the underlying technology or by CRC)
so that the content of the packet is as sent by the originator and the RequestAck bit is set in the flags
field an acknowledge must be sent back with the following content:

- the status code is to be set to GENCP_INVALID HEADER or
GENCP_NOT_IMPLEMENTED (see 4.3.2.1)

- the command id is copied from the received packet and the acknowledge flag (see 4.3.3) is
set

- the length is set to 0, the SCD is discarded

- the request _id is copied from the received packet and left untouched

- CRCs (if existing) must be adjusted

and then it is sent back to the originator.

3144 Acknowl edge packet failure

If an acknowledge packet is lost on the link, if the CRC of the acknowledge packet is corrupt or if
the content is not as expected, the following actions are supposed to happen:

The resend of the command packet uses the same request_id as the original. This allows the
receiver to identify a resend in case the request_id is already processed. In this case the command
must not be processed again but the previous result should be resent.

13 March 2019 Page 23 of 75



GEN<Ii>CAM .254

Version 1.3

GenCP Standard - ﬂ '&

cimva

Sender Receiver

CommandResend

©
<=
I

(—

Fig. 5 — Ack Failure

In case of a corrupt acknowledge packet the sender may issue the command resend immediately
without waiting for the timeout.

13 March 2019

Page 24 of 75




GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

3145 Pending Acknowl edge Packet

There are two possible failure cases using pending acknowledge.

- A complete pending acknowledge packet is lost. In this case the sender will generate a
timeout as if the pending acknowledge would not have been sent and it will issue a resend of
the command packet with the samer e q u e Bollowing dhapter 3.1.2, the receiver will
reissue a pending acknowledge packet.

- A pending acknowledge packet is received corrupt by the sender. This will trigger a resend
of the command packet.

3.2. Heartbeat

In order to maintain control in case of an unexpected abrupt detach of the controlling application, a
watchdog timer is implemented in the device. This mechanism is called Heartbeat. On start-up of
the command sender application, the Access Privilege Register in the device’s BRM must be set.
With that the Heartbeat timer in the device starts. This Heartbeat timer has to be triggered
periodically by a read/write register access from the host to the device. The timeout of the Heartbeat
can be adjusted through a register in the bootstrap register map. The presence of a Heartbeat
mechanism is indicated by a bit in the device capability register in the device’s BRM. It may be
disabled through a bit in the device configuration register in the BRM.

In case the Heartbeat counter is not triggered by a register access longer than specified in the
Heartbeat Timeout register, the device stops streaming and resets the access privilege status and
resets communication parameters. After a Heartbeat timeout it should be possible to communicate
with a device using default communication parameters for example the baud rate of serial devices.
It is technology dependent which parameters are affected.

The Access Privilege register can be set to
- Available — The device is available. The device does not stream data.

- Open (Exclusive) — Only the controlling application has read and write access to the device.
It is depending on the technology how this is observed. Other applications/hosts will receive
an error trying to access the device’s register map.

The exception to this rule is the Access Privilege register itself. This register can be read any
time.

When the host changes the state of the Access Privilege register from Open (Exclusive) to Available
the device must switch back to default communication parameters after the acknowledge for the
write command was sent. The behavior is the same as if the Heartbeat Timeout would run out. This
is to allow another application to establish a communication with the device.

13 March 2019 Page 25 of 75

Fai



GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

3.3. Genl CRIM e

A GenCP device must be register based. A manufacturer must provide access to a GenlCam file
describing the register map of the device.

The GenICam file must be stored within the device so that it can be retrieved by the host. The file
may be stored and delivered either in uncompressed or compressed format. In case it is compressed
it is up to the controlling host to deflate the file.

331.Mani f est Tabl e

A GenCP device may provide multiple GenlCam files complying with different GenICam Schema
versions. A so called “Manifest Table” register block contains a list of entries, providing
information like file versions, complying schema versions, and register addresses. A description of
the Manifest register block can be found in the Bootstrap Register Map section of this document.

3.322Retri eval

It is the responsibility of the host software to retrieve the file from the device reading the device’s
register space using the GenCP Protocol.

333.Compr essi on

The compression methods used in case the GenICam file is stored in the device in a compressed
format are DEFLATE and STORE of the .zip file format. File extension for compressed files is zip.

13 March 2019 Page 26 of 75



GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

4. Packet Layout

The protocol defines the communication between two entities. An entity is either a device or a host.
The role of a device and host are defined by the initiator of the default communication. The host is
the initiator of the communication on the default channel (see chapter 2.7) and the device responds
to that.

4.1. Gener al Packet Layout

The generic packet layout is divided into four parts:

( A
Prefix
(Technology specific)
\ Z
( )
CCD

Common Command Data
(Technology agnostic)

\_ /
( A
SCD
Specific Command Data
(Technology agnostic)

. /
(- )
Postfix
(Technology specific)

& J

Fig. 6 — General Packet Layout

9 Prefix describes a technology specific section of the packet. This section covers
- Addressing
- Protocol type identification
- CRC

- channel id etc.

If compared to UDP/IP a prefix would be omitted since everything is covered by the

13 March 2019 Page 27 of 75



GEN<I>CAM <t

Version 1.3 GenCP Standard 2 Q

underlying protocol. For a serial connection, we would not need to cover addressing because
it is not part of the technology. We need to identify a communication channel (by
channel id) and we need a CRC and we need a preamble to identify the protocol.

 The Common Command Data section contains data which describes the command. For
example, this section contains the actual command identifier and the request_id.

1 The Command Specific Data section is technology agnostic. It carries data which is specific
for a given command. For example, for a read command it would contain the address to read
from and the number of bytes to read.

9 The Postfix section is technology specific. It carries for example a CRC Checksum in case it
is needed for a given technology. This section is only mandatory if defined for a given
technology.

13 March 2019 Page 28 of 75




GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

4.2. Prefi x

In case the underlying technology does not provide an addressing schema for multiple
communication channels or does not provide a checksum mechanism the protocol needs to provide
such services. A packet then contains not only command specific data but also has to mimic an
addressing scheme between the device and host. Also we need to be able to support multiple
communication channels on a given Link and a checksum.

In case such services are provided by the underlying technology the Prefix can simply be omitted.

4.3. Common Co mbatnal

The Common Command Data section is technology agnostic.

13 March 2019 Page 29 of 75



=

GEN<I>CAM

Version 1.3

GenCP Standard

R

431.Command

Placykeu t

Width
(Bytes)

Offset
(Bytes)

Description

Prefix

Ftl 3a

Flags to enable/disable command options or to provide additional info on
the specific command.

Bit offset | Width
(Isb <<x) | (bits)
0 14

14 1

Description

Reserved, set to 0

wSljdzSaid! O

If set the sender requests an acknowledge
packet from the command receiver.

/I 2YYlFyRwSaSyR

If set the command is sent as a retry of a
previous sent that failed.

15 1

O2YYIlI YRUYAR

co mma n @ specified in the Command ID chapter 4.3.3

Sy 3aidK

Length of the Specific Command Data depending on the command ID not
including Prefix, Postfix and CCD

NBIljdzSaid AR
Sequential number to identify a single command. This id is provided by

the command sender and incremented every time a new command is
issued.

SCD

Postfix

Table 4 - Common Command Data

13 March 2019 Page 30 of 75




N

GEN<I>CAM

Version 1.3

GenCP Standard

2R

432.Acknowl edge Packet Layout
Width Offset | Description
(Bytes) | (Bytes)
Prefix
2 0 aidl ddza O2RS
Status code, indicating the result of the operation.
See chapter 4.3.2.1 for a list of codes.
2 2 O2YYlI yRUYAR
Command id as specified in the ¢ 0 mma nclehpter 403.3
2 4 Sy3idK
Length of the Specific Command Data depending on the command in
bytes.
2 6 NBIljdzSad AR
Sequential number used to identify a single acknowledge. This id is
provided by the command sender and incremented every time a new
command is issued.
SCD
Postfix

Table 5 - Acknowledge layout

13 March 2019 Page 31 of 75




GEN<I>CAM

Version 1.3

GenCP Standard

s

43.21.St at us

Codes

This section lists status codes that can be returned through an acknowledge packet. Each status code

has 16 bits. The bits within the Status Code have the following meanings:

Bit offset | Width | Description
(Isb <<x) | (bits)
0 12 {GFrddza |/ 2RS
12 1 wSaSNIBSR
Set to 0

13 2 bl YSaLl OS

0 = GenCP Status Code

1 = Technology specific Code

2 = Device specific Code
15 1 { SOSNR (&

0 = Warning/Info

1 = Error

Warning and Info Status Codes indicate that the command was correctly executed and that the

device resumes operation. For example, if a float value needed to be rounded it would be a warning
but the rounded value has been set.

13 March 2019

Page 32 of 75




GEN<I>CAM

=

R

Version 1.3 GenCP Standard
Status Code Name Description
(Hex)
0x0000 GENCP_SUCCESS Success
0x8001 GENCP_NOT _IMPLEMENTED |Command not implemented in the
device. This covers for example
- Unknown/Unsupported
command id
0x8002 GENCP_INVALID PARAMETER |At least one command parameter of
CCD or SCD is invalid or out of
range. This covers for example:
- CCD-Length field which
does not fit to the SCD-
Part
- Invalid content of the
reserved field in the SCD
- Write with request_id =0
0x8003 GENCP_INVALID ADDRESS Attempt to access a not existing
register address.
0x8004 GENCP_WRITE PROTECT Attempt to write to a read only
register.
0x8005 GENCP_BAD_ ALIGNMENT Attempt to access registers with an
address which is not aligned
according to the underlying
technology.
0x8006 GENCP_ACCESS DENIED Attempt to read a non-readable or
write a non-writable register address.
0x8007 GENCP_BUSY The command receiver is currently
busy.
0x800B GENCP_MSG TIMEOUT Timeout waiting for an acknowledge.

13 March 2019

Page 33 of 75




GEN<I>CAM

N

R

Version 1.3 GenCP Standard
0x800E GENCP _INVALID HEADER The header of the received command
is invalid. This includes CCD and
SCD fields but not the command
payload. This covers for example:

- Invalid combinations of
flags in the CCD-Flags
field

- The transmitted packet
length does not fit to
expected size with the
given command and CCD-
Length incl. Prefix and
Postfix.

0x800F GENCP_WRONG CONFIG The current receiver configuration
does not allow the execution of the
sent command.

0x8FFF GENCP_ERROR Generic error.

Table 6 — Status Codes

13 March 2019

Page 34 of 75




GEN<I>CAM <t

Version 1.3

GenCP Standard - 2 Q

433.Commanm ds

This chapter describes the ¢ 0 mm a ®di@dr the command field in the Common Command Data
section of a GenCP command packet. The layout of a 16bit ¢ 0 mm a nischs fallaws:

Bit offset | Width | Description
(Isb <<x) | (bits)
0 1 l O1y2e¢f SRIS Cfl 3
- Set this bitto 0 if the c 0 mma rbelongs td a
command
- Setthis bitto 1 if the c 0 mma niscised fa an
acknowledgement
1 14 I 2YYl YR I f dzS
Number identifying a single command/acknowledge
15 1 [ dzai2Y [/ 2YYFYR LRSYGATASN]
- {SG Uik an oiA2d ARSYUGATE |
gt dzS
- {SG GKA&a oAlG G2 wm G2 YI

Command ids can either identify a command or an acknowledge.

Command _ids identifying a command must have the LSB cleared.

Command _ids identifying an acknowledgement must have the LSB set to 1.

Custom command _ids must have the most significant bit set (Hex 8xxx) so that they do not collide

with future standard extensions.

Standardized command ids are:

13 March 2019 Page 35 of 75




GEN<I>CAM

Version 1.3

GenCP Standard

=

R

Command Name

command id

READMEM CMD Hex 0800
READMEM_ACK Hex 0801
WRITEMEM_CMD Hex 0802
WRITEMEM_ACK Hex 0803
PENDING ACK Hex 0805
READMEM_STACKED CMD Hex 0806
READMEM STACKED ACK Hex 0807
WRITEMEM _ STACKED CMD Hex 0808
WRITEMEM  STACKED ACK Hex 0809
EVENT CMD Hex 0C00
EVENT ACK Hex 0CO1

Table 7 — Command Identifier

13 March 2019

Page 36 of 75




=

R

GEN<I>CAM

Version 1.3 GenCP Standard

4.4. Commaisghec DALt @

441. ReadMem Command

Start address and length of any read access is byte aligned unless the underlying technology states
different rules.

Width | Offset | Description
(Bytes) | (Bytes)
Prefix
CCD (command id = READMEM_CMD)
8 0 NEIAAGSNI I RRNBaa
64 bit register address.
2 8 NB & SNBSR
Reserved, set to 0
2 10 | NB ISR/ 3fii K
Number of bytes to read.
Postfix

Table 8 - ReadMem SCD-Fields

442.ReadMem Acknowl edge

Width | Offset | Description
(Bytes) | (Bytes)

Prefix

CCD-ACK (command id = READMEM ACK)

X 0 51 G I

Data read from the remote device’s register map. If the number of bytes
read is different than the specified in the relating READMEM_CMD the
status of the READMEM ACK must indicate the reason.

Postfix

Table 9 - ReadMem Ack SCD-Fields

13 March 2019 Page 37 of 75



N

GEN<I>CAM ﬂ:
Version 1.3 GenCP Standard 4’&
443. Wr i t eMem Command

Any write access start address and length is byte aligned unless the underlying technology states
different rules. The number of bytes to write is deduced through the length field of the CCD header.

Width | Offset | Description
(Bytes) | (Bytes)
Prefix
CCD (command id = WRITEMEM CMD)
8 0 |[NB3IAalSNI I RRNBaa
64 bit register address.
X 8 RI QI
Number of bytes to write to the remote device’s register map.
Postfix

Table 10 - WriteMem Command SCD-Fields

444 Wr i t eMem Acknowl edge

The WriteMem acknowledge states the result of a WriteMem command.

Width
(Bytes)

Offset
(Bytes)

Description

Prefix

CCD-ACK (command id = WRITEMEM _ACK)

Na SNSR
This reserved field is only sent if the length written field is sent with the
acknowledge. If it is sent it is to be set to 0.

f SY3a3dK gNAGOSY
Number of bytes successfully written to the remote device’s register map.

The length written field must only be sent if the according bit in the
Device Capability register is set.

Postfix

Table 11 - WriteMem Ack SCD-Fields

The length field in CCD section of the WriteMem Ack must be set to 0 or 4 depending on the bit in

13 March 2019 Page 38 of 75




GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

the Device Capability register. In case the write length field (and the 2 reserved bytes) is sent, the
length field is to be set to 4. In case the length written field is not sent the length field is 0.

445Pending Acknowl edge

The pending acknowledge informs the sender that the command, sent with the given request id,
needs more time to execute than stated in the MDRT register. This allows the temporary adjustment
of the timeout mechanism on the command sender side. This “new” temporary timeout is only valid
for the command referenced by request id. Multiple pending acknowledges can be sent
consecutively. The start time for the timeout specified is the time when the pending ack is sent
assuming that the time needed to transfer the command is roughly known. The timeout is not
referring to the time the original command is sent.

Width | Offset | Description
(Bytes) | (Bytes)

Prefix
CCD-ACK (command id = PENDING ACK)
2 0 |[NBaSNWBSR
I,{e§erved, set to 0. ] _ i
2 2 USYLIZNFNE UAYSZ2dzu

Temporary timeout for the command sent with the given request id. The
timeout is specified in ms. The reference time/start time for the temporary
timeout is the time the PendingAck is sent.

Postfix

Table 12 - Pending Ack SCD-Fields

446, ReadMemSt acked Command

The ReadMemStacked Command allows sending multiple read requests in one packet. The
resulting data must not exceed the maximum packet size. Start address and length of any read
access is byte aligned unless the underlying technology is not. The count of read commands within
the packet n has to be deduced by the receiver using the packet size sent by the transmitter.

Width Offset Description
(Bytes) (Bytes)

13 March 2019 Page 39 of 75



GEN<I>CAM

=

GenCP Standard 4’&

Version 1.3
Prefix
CCD (command id = READMEM_STACKED CMD)
8 0 NEIAadSNI I RRNBaa n
64 bit register address of the first data block to read.
2 8 NJa SNUSR
Reserved, set to 0
2 10 NB ISR/ JfTikno0
Number of bytes to read from address 0.
8 (1*%12) NEIAAGSNI I RRNBaa m
64 bit register address of the second data block.
2 8+(1*12) Nva SNIBSR
Reserved, set to 0
2 10+(1*12) | NB ISR/ 3firikn, 0
Number of bytes to read from address 1.
8 (0-D*12) |[NBIAAGSNH F RRNBaa vy
64 bit register address of the last data block to read.
2 8+((n-1)*12) |[NB & SNBSR
Reserved, set to 0
2 10+((n-1)*12) | NB SR/ IfmKLea, 10
Number of bytes to read from address n-1.
Postfix

447 ReadMemSt acked

The ReadMemStacked acknowledge states the result of a ReadMemStacked command.

Table 13 - ReadMemStacked SCD-Fields

Width Offset Description
(Bytes) (Bytes)
Prefix
CCD-ACK (command id = READMEM_ STACKED ACK)
Leno 0 R Gl
Data read from the remote device’s register map.

13 March 2019 Page 40 of 75

Acknowl edge




GEN<I>CAM >3
Version 1.3 GenCP Standard 4’&

Len; Leno R G

Data read from the remote device’s register map.

X

Lenn-l . ﬁ l:l |
0 Qe ] )
Data read from the remote device’s register map.

Postfix

Table 14 - ReadMemStacked Ack SCD-Fields

If the number of bytes read is different than specified in the relating
READMEM_STACKED CMD the status of the READMEM_ STACKED ACK must indicate the
reason. In that case subsequent read requests from the according READMEM_STACKED CMD

are not executed by the receiver. The acknowledge only returns the data read correctly.

448 Wr 1 t e MemSt acked Command

The WriteMemStacked command allows sending multiple write requests in one packet. Any write
access start address and length is byte aligned unless the underlying technology states different
rules. The number of bytes to write is deduced from the length field of the CCD header. The count
of writes n within the packet has to be deduced by the receiver by parsing the packet up to the
packet size sent by the transmitter.

Width Offset Description
(Bytes) (Bytes)
Prefix
CCD (command _id = WRITEMEM_STACKED_ CMD)
8 0 NEIAaGSMN I RRNBaa
64 bit register address of the first data block to write
2 8 Na SNBSS R
Reserved, set to 0
2 10 f SY3dkK RB§Byot 201 n
Length of the first data block to write in bytes
Leno 12 R Gt
First data block
8 12+Leno NEIAaldSmJ I RRNBaa
64 bit register address of the second data block to write

13 March 2019 Page 41 of 75



=

R

GEN<I>CAM

Version 1.3 GenCP Standard

2 20+Leng NJ& SNISR
Reserved, set to 0

2 22+Leno f SY3dkK Ra dolp Soyt 2 O
Length of the second data block in bytes

Len 24+Leno =~

Second data block

8 ) NEIAAGSY | RRNB& &

pg 0Q¢

64 bit register address of the last data block to write

2 — [NASNDSR
g pg 0Qe
Reserved, set to 0

2 ) f SYyadkK Rmwmdlousty201 VY
p T pg 0Qe¢
Length of the last data block in bytes
Lenn.1 IR
pPc  pc 0DQE
Last data block
Postfix

Table 15 - WriteMemStacked Command SCD-Fields

449.Wr i t eBMteanc Red nowl edge

The WriteMemStacked acknowledge states the result of a WriteMemStacked command.

Width Offset Description
(Bytes) (Bytes)

Prefix
CCD-ACK (command id = WRITEMEM STACKED ACK)
2 0 WS a SNIISR
Reserved, set to 0
2 2 f SYy3dK a[BWNAGGSY

Number of bytes successfully written to the remote device’s register
map. For WRITEMEM_STACKED_ ACK it is mandatory to report the
length written (different than with the WRITEMEM ACK).

13 March 2019 Page 42 of 75



=

R

GEN<I>CAM

Version 1.3 GenCP Standard
2 4 NBEaSNIDSR
Reserved, set to 0
2 6 f SYy3dK e[ BWAGGSY

Number of bytes successfully written to the remote device’s register
map. For WRITEMEM_STACKED ACK it is mandatory to report the
length written (different than with the WRITEMEM ACK).

2 (m-)*4 |INBaSNUSR

Reserved, set to 0

2 [ 2+Hn-D)*4 | Sy AEEIGKNA O] Sy

Number of bytes successfully written to the remote device’s register
map. For WRITEMEM_STACKED_ ACK it is mandatory to report the
length written (different than the WRITEMEM ACK).

Postfix

Table 16 - WriteMemStacked Ack SCD-Fields

The writes are executed sequentially. In case of an error during a write command subsequent writes
are not executed and the WRITEMEM_ STACKED ACK returns the status. The length x written
fields within the WRITEMEM STACKED ACK reflect the successful written bytes.

13 March 2019 Page 43 of 75



GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

4.4.10. Evefbmmand

If the MultiEvent Supported bit is set in the Device Capability register and if the MultiEvent Enable
bit is set in the Device Configuration register a single Event Command can carry multiple separate
events including their data. The host must parse a received Event Command to determine how many
single events are contained in a given Event Command and to access one of them. If the packet is
parsed more events are expected until the length stated in the SCD section is exhausted. The first
event is located at address 0 in the SCD section of the command. The event n would start at

0 "QQi 6Ldo Qi Q0 Q& ®dXwithin the SCD section where n is the index of the event to
access. In case a single event does not carry additional data the event size field is to be set to 12.
This way the upper software layers can see if an event packet carries multiple events. Even if the
MultiEvent is supported and enabled an Event Command packet can contain only one event. In this
case, the size in the CCD section would match the event size field in the SCD section.

If MultiEvent is not supported or if the MultiEvent Enable bit in the Device Configuration register
is not set the event_size field must be set to 0 (reserved) and the size of data is deduced from the
SCD size as stored in the CCD section of the packet.

Width | Offset | Description
(Bytes) | (Bytes)

Prefix

CCD (command id = EVENT CMD)
2 0 SoSyidwaals
If the MultiEvent Supported bit is set in the Device Capability register
and if the MultiEvent Enable bit is set in the Device Configuration
register: Size of event data object in bytes including event size, event _id,
timestamp and optional data.
Otherwise 0 to be backward compatible.
p 2 8Byl yAR
The event_id is a number identifying an event source. The schema of the
event _id follows the description in chapter 3.1.3.1

8 4 Y S¥LJ |
64 bit timestamp value in ns as defined in the timestamp bootstrap
register.

X 12 |RFGF

Optional event specific data.
Postfix

Table 17 - Event Command SCD-Fields

13 March 2019 Page 44 of 75



o V
GEN<I>CAM <t
Version 1.3 GenCP Standard 2 Q
4.4.11. Event Acknowl edge
Width | Offset | Description
(Bytes) | (Bytes)
Prefix
CCD-ACK (command id = EVENT ACK)
Postfix
Table 18 - Event Acknowledge SCD-Fields
4.5. Post fiXx

The Postfix carries data like a CRC in case the underlying protocol layers do not provide such
services. The Postfix is conditional mandatory depending on the technology.

13 March 2019

Page 45 of 75




GEN<I>CAM >3
Version 1.3 GenCP Standard 4’&

5. Bootstrap Register Map

5.1. Technol ogy Agnostic Bootstrap Regi

The Technology Agnostic Bootstrap Register Map (ABRM) uses the first 64 Kbytes of the register
space. The table below shows the layout of the technology agnostic part of that bootstrap register
map. This part also contains pointers to various other parts like the Manifest which provides access
to the device GenlCam files or the technology specific bootstrap registers.

5.2. String Registers

String registers not fully used are to be filled with 0. In case the full register is used the terminating
0 can be omitted. The encoding of the content of a string register must match the Device Capability
register.

5.3. Conditional Mandatory Registers

Conditional Mandatory (CM) registers are registers which may or may not be implemented
depending on the Device Capability register. Access to a CM register which is indicated as being
not available will return a GENCP_INVALID ADDRESS status code.

13 March 2019 Page 46 of 75



GEN<I>CAM

=

2R

Version 1.3 GenCP Standard
5.4. Regi ster Map
Width Offset Support | Access |Description
(Bytes) (Bytes)
4 0x00000 M R DSy/t =SNBAZ2Y
Complying GenCP specification Version
64 0x00004 M R al ydzFl OGdzNBNJ bl YS
String containing the self-describing name of
the manufacturer
64 0x00044 M R |a2RSf bl YS
String containing the self-describing name of
the device model
64 0x00084 CM R CLYAf& bl YS
String containing the name of the family of this
device
64 0x000C4 M R 5SOA0S SNBAZ2Y
String containing the version of this device
64 0x00104 M R al ydzF OG0 dzNBNJ Ly T2
String containing additional manufacturer
information
64 0x00144 M R [{SNAIFf bdzyoSNJ
String containing the serial number of the
device
64 0x00184 CM RW [ aSNI5STAYSR bl YS
String containing the user defined name of the
device
8 0x001C4 M R |5S0A0S /LI oAtAGe
Bit field describing the device’s capabilities
4 0x001CC M R |alEAYdzy 550A0S wSalLjy
Maximum response time in ms
8 0x001D0 M R alyAFSald ¢l ofS ! RRNEF
Pointer to the Manifest Table
8 0x001D8 CM R {.wa ! RRNB3aa
Pointer to the Technology Specific Bootstrap
Register Map
8 0x001E0 M RW |5SOA0S /2y FAIdzNI (A 2\
Bit field describing the device’s configuration

13 March 2019

Page 47 of 75




GEN<I>CAM

=

R

Version 1.3 GenCP Standard
Width Offset Support | Access |Description
(Bytes) (Bytes)
4 0x001E8 CM RW | SFNIo6oSFHG ¢AYS2dzi
Heartbeat Timeout in ms
4 0x001EC CM RW |aSaal3asS /KFyySft L5
channel id used for the message channel
8 0x001F0 CM R |[¢eAYSadl yL
Last latched device time in ns
4 0x001F8 CM W [¢AYSadlyYL [F{OK
8 0x001FC CM R ¢CAYSaldl YL LYONBYSy
4 0x00204 CM RW | O00Saa tNAGAE SIS
4 0x00208 wSaSHRBSRNEOI SR t NRI
y2i NBdza SO
4 0x0020C CM R LYLX SYSy (Gl GdA2YyY 9y RAI
Endianess of device implementation registers
64 0x00210 CM R 5SOA0S [ FgHESHEHFNDBS +SN
Version of the public software interface of the
device.
64944 0x00250 M no Reserved Register Space
Table 19 - Technology agnostic BRM
- Width Size of the register in bytes.
- Offset Address of the register (Offset in Bytes) in the device’s BRM
- Support M=Mandatory/R=Recommended/ CM=Conditional Mandatory (depending
on the capability bits)
- Access R=READONLY, W=WRITEONLY, RW=READWRITE
- Description Name and Very short hint on the meaning

13 March 2019

Page 48 of 75




GEN<I>CAM

Version 1.3

GenCP Standard

=

R

541.GenCWPer si

on

Version of the GenCP specification this Bootstrap Register Map complies with.

Offset Hex 0
Length 4
Access Type R
Support M
Data Type 2 x 16bit fields
Factory Default Implementation specific
Bit offset | Width | Description
(Isb <<x) | (bits)
0 16 aAy2Nl +tSNAAZ2Y
Minor Version of the Standard this BRM and the protocol the device's
implementation complies to.
16 16 al 22NJ +SNAA2Y
Major Version of the Standard this BRM and the protocol the device's
implementation complies to.

Table 20 - Register GenCP Version

542.Manuf acNamear

Manufacturer Name is a string containing a human readable manufacturer name.

Offset Hex 4
Length 64
Access Type R
Support M
Data Type String
Factory Default Device specific

13 March 2019

Page 49 of 75




GEN<I>CAM

GenCP Standard

“AX

Version 1.3

543.Mo d el Na me

The register contains a string with a human readable model name.

Offset Hex 44
Length 64
Access Type R
Support M
Data Type String
Factory Default Device specific

544.FamiNayme

Family Name is a string containing a human readable name referring to multiple (similar) models of
a single manufacturer. The Family Name Supported bit in the Device Capability register indicates if
this register is present or not.

Offset Hex 84
Length 64
Access Type R
Support CM
Data Type String
Factory Default Device specific

13 March 2019

Page 50 of 75



GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

545.Devi ce \eMasniudnmacturer specific)

A string containing a Device Version.

'An application must NOT make any assumptions based on the content of this string. Its content is
purely manufacturer specific and may or may not change in case of e.g. a firmware update. See
Device Software Interface Version for a defined way to deal with changes that affect the behavior of
the device.

Offset Hex C4
Length 64
Access Type R
Support M
Data Type String
Factory Default Device specific

546.Manuf aclhiuo er

Manufacturer Info is a string containing manufacturer specific information. If there is none, this
field should be all 0.

Offset Hex 104
Length 64
Access Type R
Support M
Data Type String
Factory Default Device specific

13 March 2019 Page 51 of 75



GEN<I>CAM

GenCP Standard

“AX

Version 1.3

547.Ser i al Number

The register contains a string representing the serial number of the device.

Offset Hex 144
Length 64
Access Type R
Support M
Data Type String
Factory Default Device specific
548.User Defined Name

A string containing a user defined name. A write to this register must instantly persist without

explicitly being stored to non-volatile memory. The User Defined Name Supported bit in the Device

Capability register indicates if this register is present or not.

Offset Hex 184
Length 64
Access Type RW
Support CM
Data Type String
Factory Default Empty String

13 March 2019

Page 52 of 75



GEN<i>CAM | ‘74(‘
Version 1.3 GenCP Standard 4’&
549.Device Cywpabilit

Device capability bits describe implementation specific details.

Offset Hex 1C4
Length 8
Access Type R
Support M
Data Type Bitfield
Factory Default Implementation specific

13 March 2019

Page 53 of 75




=

GEN<I>CAM

GenCP Standard 4’&

Version 1.3

Bit offset | Width | Description

(Isb <<x) | (bits)

0 1 & S I18JF Abyl SYRSdzLJLI2 NI S R
Set if the device supports the User Defined Name register.

1 1 1 00Saa { MNIANIEIS
Set if Heartbeat/Access Privilege is supported.

2 1 aSaal3asS / KFyySt { dzLJLJ2 NI SR
Set if the device supports a Message Channel.

3 1 CAYSAGF YL { dzLJLI2 NJi SR
Set if the device supports a timestamp register.

4 4 {GNAY3 9y O2RAY13
String Encoding of the BRM

- 0x0->ASCII

- 0x1 ->UTF8

- 0x2->UTF16

- 0x3-0OxF -> Reserved

8 1 C Il B\ If Y{SdzLJLJ2 NI SR
Set if the device supports the Family Name register.

9 1 { . wa {dzLJLJ2 NI SR
Set if the device supports a SBRM.

10 1 9YRAIFIYSaa wS3IAAGSNI { dzLJL32 NI SR
Set if the device supports the Implementation Endianess register.

11 1 2NRAGOSY [Sy3dK CASEtR {dzLJ2 NI SR
Set to 1 if the device sends the length written field in the SCD section of
the WriteMemAck command.

12 1 adzt GA9@Syd { dzLJLJ2 NI SR
Set to 1 if the device supports multiple events in a single event
command packet.

13 1 {GF O1 SR /I 2YYlIyR&a { dzLJLJ2 NI SR
Set to 1 if the device supports ReadMemStacked and WriteMemStacked
commands.

14 1 5SOADBUBYNBNFI OS SNEAZ2Y { dzLJLJR
Set to 1 if the Device Software Interface Version register is supported.

15 49 wSaSNIBSR
Set to 0.

Table 21 - Register Device Capabilities
5.4.10. Max mubBevi ce Resp@MDRel ) Ti me

Integer value containing the maximum time in milliseconds until a device reacts upon a received

13 March 2019 Page 54 of 75




GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

command. This is not including the time needed to receive the command or send the acknowledge
packet but only the time needed to execute the command. In case a device needs longer to process a
command it must send a pending ack.

The maximum time needed to transfer the message is depending on the link speed and the
maximum size of the message.

This number may have direct impact on the behavior of software layers above. It is to be kept as
short as possible.

The maximum response time must not exceed 300 ms in order to guarantee a good device’s
behavior.

Reading this register must not exceed 50 ms processing time.

Offset Hex 1CC
Length 4
Access Type R
Support M
Data Type UINT32
Factory Default Implementation Specific

Bit offset | Width | Description
(Isb <<x) | (bits)

0 32 al EAYdzYy 5S@A0S wSalLkkyasS ¢AYS
Maximum time until a device sends a response upon a received
command not including the time needed to send the response over the
link in ms.

Table 22 - Register Maximum Device Response Time

13 March 2019 Page 55 of 75



GEN<I>CAM ' ‘74(‘
Version 1.3 GenCP Standard 4’&
5.4.11. Mani festAddalkrlses

Pointer to the Manifest table containing the URLs for the GenlCam files for this device. (See

chapter 5.5.1)

Offset Hex 1D0
Length 8
Access Type R
Support M
Data Type UINT64
Factory Default Implementation specific
Bit offset | Width | Description
(Isb <<x) | (bits)
0 64 alyA¥fSaid ¢lofS ! RRNBaa
64-bit register address of the Manifest Table
Table 23 - Register Manifest Table Offset
5.4.12. SBRMddr ess

The register contains a pointer to the Technology Specific Bootstrap Register Map. The SBRM
Supported bit in the Device Capability register indicates if this register is present or not.

Offset Hex 1D8
Length 8
Access Type R
Support CM
Data Type UINT64
Factory Default Implementation Specific

13 March 2019

Page 56 of 75




GEN<I>CAM

7\

7

Version 1.3 GenCP Standard
Bit offset | Width | Description
(Isb <<x) | (bits)
0 64 {.wa ! RRNBaa
Technology Specific Bootstrap Register Map Address
Table 24 - Register Technology Specific Bootstrap Register Map
5.4.13. Device Configuration

Device Configuration bits describing implementation specific details.

Offset Hex 1EO
Length 8
Access Type RW
Support M
Data Type Bitfield
Factory Default Device specific
Bit offset | Width | Description
(Isb <<x) | (bits)
0 1 | SIENLIoSFG 9ylFofS
Set to enable the Heartbeat Timer. The Access Privilege Supported bit in
the Device Capability register indicates if this bit is available or not. If it
is not available it must be set to 0.
1 1 adzt GA9@Syld 9ylofsS
{Sd G2 Itft2¢ YdAf AL S S@OSyida A
Aa 2yte FT@rAfloftS AT GKS adz A
[ L L oAfAGE NBIAAUSNIP hGKSNBAAS
2 62 wSaSNIBSR
Set to 0.
Table 25 - Register Device Configuration
5.4.14, Heartbeat Ti meout

The register is available if the Access Privilege Supported bit in the Device Capability register is
set. If the Heartbeat expires the communication parameters of a device are reset, for example the
baud rate of a serial device. It is technology dependent which parameters are affected. After a
Heartbeat timeout a host should be able to communicate with a device using default communication

13 March 2019 Page 57 of 75




GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

parameters. The Heartbeat is triggered/reset through any register access initiated by the host.

Offset Hex 1E8
Length 4
Access Type RW
Support CM
Data Type UINT32
Factory Default 3000

Bit offset | Width | Description
(Isb <<x) | (bits)

0 32 | SFNIo6SFG ¢AYS2dz
Heartbeat timeout in milliseconds.

Table 26 - Register Heartbeat Timeout

5.4.15. Message Channel | D

The register contains the channel id to be used for the message channel. This register has to be
written by the host to inform the device which channel to use for the message channel. At start up
the register contains 0 indicating that it is not initialized by the host. A channel id of 0 for the
Message Channel is not valid since 0 is used for the command channel.

Offset Hex 1EC
Length 4
Access Type RW
Support CM
Data Type UINT32
Factory Default 0

Bit offset | Width | Description
(Isb <<x) | (bits)

0 32 /| KIyySt L5
Message Channel ID.

Table 27 - Register Message Channel ID

13 March 2019 Page 58 of 75



GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

This register is present if the Message Channel Supported bit in the Device Capability register is
set. The Channel ID to be used is technology specific.

13 March 2019 Page 59 of 75



GEN<I>CAM

Version 1.3

GenCP Standard

s

5.4.16. Ti

mest amp

A read of this register provides a timestamp of a free running, device internal clock in ns. Before
reading the timestamp register must be latched to the device’s internal clock by writing to the

Timestamp Latch register.

Offset Hex 1F0
Length 8
Access Type R
Support CM
Data Type UINT64
Factory Default 0
Bit offset | Width | Description
(Isb <<x) | (bits)
0 64 CAYSAdl YL
Device Time in ns.

Table 28 - Register Timestamp

The Timestamp Supported bit in the Device Capability register indicates if this register is present or

not.

13 March 2019

Page 60 of 75




GEN<I>CAM

s

Version 1.3 GenCP Standard
5.4.17. Ti mestamp Latch
A write with the Timestamp Latch bit set to 1 latches the current device time into the timestamp
register.
Offset Hex 1F8
Length 4
Access Type w
Support CM
Data Type Bitfield
Factory Default -
Bit offset | Width | Description
(Isb <<x) | (bits)
0 1 CAYSAdl YL [ G§OK
Latch the current device time into the timestamp register. The bit is self-
clearing which means that you do not need to set it to 0.
1 31 wSaSNBSR
Set to 0.

Table 29 - Register Timestamp Latch

The Timestamp Supported bit in the Device Capability register indicates if this register is present or

not. This register must be supported if the Timestamp register is supported.

13 March 2019

Page 61 of 75




GEN<I>CAM

Version 1.3

GenCP Standard

s

5.4.18.

Ti mestlanncpr e me nt

This register indicates the ns/tick of the device internal clock. This allows the application to deduce
the accuracy of the timestamp provided by the bootstrap register. For example a value of 1000
indicates the device clock runs at IMHz.

Offset Hex 1FC
Length 8
Access Type R
Support CM
Data Type UINT64
Factory Default Device specific
Bit offset | Width | Description
(Isb <<x) | (bits)
0 64 ¢CAYSaldl YL LYONBYSy
Timestamp increment in ns/tick.

Table 30 - Register Timestamp Increment

The Timestamp bit in the Device Capability register indicates if this register is present or not. This
register must be supported if the Timestamp register is supported.

13 March 2019

Page 62 of 75




GEN<I>CAM P

Version 1.3 GenCP Standard

%

5.4.19. AcceBmisi vil ege

This register reflects the current access privilege.

Offset Hex 204
Length 4
Access Type RW
Support CM
Data Type Bitfield
Factory Default 0

Bit offset | Width | Description
(Isb <<x) | (bits)

0 3 I 00Saa tNAGAE SIS
Current Access Privilege as described in 3.2
0 = Available
1 = Open (Exclusive)
2-7 = reserved

3 29 wSaSNISR
Set to 0.

Table 31 - Register Access Privilege

This register is available if the Access Privilege Supported bit in the Device Capability register is
set. In case the Access Privilege register is available and the Heartbeat Enable bit is set in the
Device Configuration register the Access Privilege is reset to 0 after the Heartbeat expired.

13 March 2019 Page 63 of 75



GEN<I>CAM >3
Version 1.3 GenCP Standard 4’&

5.4.20. Protocol Endi aness

This register has been deprecated. Its content should be ignored (neither read nor written)

Offset Hex 208
Length 4

Access Type

Support

Data Type

Factory Default Deprecated

5.4.21. | mpl ementation Endianess

This register reflects the endianess of the device implementation. By reading the register the host
can detect the endianess of the device specific registers.

Offset Hex 20C
Length 4
Access Type R
Support CM
Data Type UINT32
Factory Default Device specific

Bit offset | Width | Description
(Isb <<x) | (bits)

0 32 LYLX SYSyGlGdA2y 9yYRAFYySaa
Endianess of the device implementation.

0 = big-endian

OxFFFFFFFF = little-endian

Table 32 - Register - Implementation Endianess

This register is available if the Endianess Register Supported bit in the Device Capability register is
set.

13 March 2019 Page 64 of 75



GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

5.4.22. DeviScoef t wanrteer f ace Ver si on

The Device Software Interface Version references a certain version of the publicly available
software interface of the device. The content of the register should change to a new value (not used
before) whenever any of this changes:

implemented communication protocol

publicly available register map (all registers referenced by the XML and the bootstrap)
- user accessible camera functionality
the GenApi XML.

The semantics of the string are vendor specific. The standard only requires that the string changes if
any of the above listed components change.

If this register is supported the according bit in the Device Capability register needs to be set to 1.

The Device Software Interface Version may or may not indicate some device internal changes but
that is not the primary objective.

Offset Hex 210

Length 64
Access Type R

Support CM

(intended to make M in the
next major release of the
this standard)

Data Type String

Factory Default Device specific

It is intended to make the Device Software Interface Version register mandatory in the next major
release of this standard.

5.5. Generi c Tabl es

551.Mani f est

The manifest provides a way to store multiple GenlCam-related files in the device. These GenICam
files may be available in different versions, in various formats or comply to different versions of the
GenlCam schema. The manifest table contains a list of Manifest Entries.

13 March 2019 Page 65 of 75



=

GEN<I>CAM

Version 1.3 GenCP Standard 2 Q

55.11. Mani f est Tabl e

Width Offset Support | Access Description
(Bytes) (Bytes)
8 0 M R at 9yanNgi
Number of entries in the Manifest Table
64 8 M R al yATSald 9yiNR n
First entry in the Manifest Table
64 8+ 64 0 R al yAFSald 9y iNER w

Second entry in the Manifest Table

64 8 + n*64 0 R al yATSald 9yuNr vy
(N+1)th entry in the Manifest Table

Table 33 — Manifest Table Layout

13 March 2019 Page 66 of 75



GEN<I>CAM P

Version 1.3

GenCP Standard

%

55.1.2. Mani

f est

Entry

Each Manifest Entry describes the properties of a single file.

Width | Offset | Description
(Bytes) | (Bytes)
4 0 DSYL/ Y CAtS #SNRAZ2Y
Bit offset | Width | Description
(Isb <<x) | (bits)
0 16 CAfE &0 YAY 2N +tSNAAZ2Y
Subminor version of the GenlCam file
referenced in this entry.
16 8 CAd Sy 2NJ tSNEAZ2Y
Minor version of the GenICam file referenced
in this entry.
24 8 CAd IS22NJ tSNBRAZ2Y
Major version of the GenlCam file referenced
in this entry.
4 4 { OKSYIl «kk CQX({SI®RAIEN I
Bit offset | Width | Description
(Isb <<x) | (bits)
0 3 CAftS ¢&Ls

File type of the file this manifest entry points
to.

0 = Device XML

This is the “normal” GenlCam device xml
containing all device features. This is the one
file provided in GenCP until version 1.1.

1 = Buffer XML

This optional XML-file contains only the
chunkdata related nodes. This allows the
consumer to instantiate one nodemap per
buffer in case the buffers containing chunk
data and so work on multiple buffers in
parallel.

2-7 =reserved

13 March 2019 Page 67 of 75




GEN<I>CAM

=

GenCP Standard 4’&

Version 1.3
3 7 wSaSNWBSR
Set to 0.
10 6 CAC BN I {
File format of the file this entry points to.
0 = Uncompressed GenlCam XML file
1 = ZIP containing a single GenlCam XML
file
2-63 = reserved
16 8 { OKSaYAly 2 NJ +SNEA2Y
Minor Version of the GenlCam Schema the
GenlCam file complies with.
24 8 { OKSaYHI22 Nl +SNEA2Y
Major Version of the GenlCam Schema the
GenlCam file complies with.
8 8 |wS3IAAGSNI ! RRNBaa
Register Address at which the file can be read from.
8 16 |CA{fAST S
Size of the file this manifest entry points to in bytes.
20 24 {1 MM &K
SHAT1 Hash of the file or 0 in case the hash is not available.
20 44 |wSaSNBSR
Set to 0.

Table 34 - Manifest Entry Layout

13 March 2019 Page 68 of 75




GEN<I>CAM >3
Version 1.3 GenCP Standard 4’&

Appendi X

1.Ser i al Port | mpl ementations

This section specializes the generic protocol for the use over a serial link.

1.1. Byteorder

For devices communicating over a serial link the byte order of bootstrap registers and protocol
fields is big-endian.

1.2. Channel | D

The default channel id for the control channel on a serial link is channel id = 0.

1.3. Packet Si ze

In order to maintain reasonable response times even with low link speeds the packets must not
exceed 1024 Bytes per packet.

1.4. Seri al Par ameter s

141.Def ault port parameters

The link uses 8Bit, No Parity, 1 Stop Bit encoding and 9600 Baud per default. The Link can be
switched to other communication parameters and/or higher baud rates after a communication has
been established using the transport layer specific bootstrap registers.

142.Changing port parameters

When switching to other communication parameters the procedure is as follows:

13 March 2019 Page 69 of 75



GEN<i>CAM ‘74(‘
Version 1.3 GenCP Standard 4& CInva

Host Device
Command C::) Command
Write Change Write Change

[ Command Ack j C: [ Command Ack ]

Command (::) Command
Write Confirm Write Confirm

( Command Ack ) C:) [ Command Ack ]

The confirmation command rewrites the register which was written in the change step.

In case the device does not receive the confirming write command with the new parameters within
250 ms after sending the acknowledge it falls back to the original parameter set.

In case the write confirm fails the host must wait for 500 ms and then retry using the original
parameter set.

13 March 2019 Page 70 of 75



GEN<i>CAM t(i
Version 1.3 GenCP Standard 4’&

1.5. Seri al Prefi x

For a serial connection we do not have to handle addressing between device and host because it is a
point to point connection but we do need to mimic multiple communication channels. In addition a
packet preamble allows to identify a GenCP packet and differentiate it from other (ASCII based)
protocols.

For the default communication channel the channel id is always 0.

Width | Offset | Description
(Bytes) | (Bytes)

2 0 nEnmAan OLINBI Yof Sov

Leading binary Ox1 (SOH) 0x00 (NULL) send on the link to identify a
GenCP package to allow the application layers above to distinguish
between different protocols.

2 2 [ | 16 wrk c

CRC-16 build from the channel id and CCD
2 4 { /16 wr c

CRC-16 build from channel id, CCD, SCD and Postfix
2 6 OKI yySf yAR

A 16bit number identifying a communication channel. Channel 0 is
reserved the for the default communication channel.

Table 35 - Serial Prefix

This prefix layout is identical for command and acknowledge packets. The Checksum is the 16-bit
one’s complement of the one’s complement sum of the whole packet including preamble. The
computation algorithm is the same as for the UDP checksum referenced in RFC 768.

1.6. Seri al Post fi x

We do not need a Postfix section for serial links.

1.7. Packet failure

In case the device or the host receives a command packet with an invalid CCD-CRC the receiver

13 March 2019 Page 71 of 75



GEN<I>CAM >3
Version 1.3 GenCP Standard 4’&

can not be sure that the Acknowledge-Request bit is set in the command. Therefore, the received
command has to be discarded. The sender will run into a timeout and the normal resend procedure
has to be applied.

For other errors like unsupported ¢ 0 mma n ttle failugle procedure as described in the GenCP
document is to be applied.

1.8. Technol ogy Speaipf RegBesdotest Map

Width Offset Support | Access Description

(Bytes) (Bytes)
4 0 M R { dzLILI2 NIISR . I dzZRNJ (1S &
4 4 M RW |/ dZNNBy G . F dzRNY 4GS

Table 36 - Serial BRM

181.Supported Bawudrate

Bitfield indicating the supported baud rates.

Offset Hex 000
Length 4
Access Type R
Support M
Data Type Bitfield
Factory Default Device specific

13 March 2019 Page 72 of 75



GEN<I>CAM P

Version 1.3 GenCP Standard

%

Bit offset | Width | Description
(Isb <<x) | (bits)

0 32 { dzZLJLI2 NIISR . F dzZRNJ G S

BAUDRATE 9600 = 0x00000001
BAUDRATE 19200 = 0x00000002

BAUDRATE 38400 = 0x00000004
BAUDRATE 57600 = 0x00000008
BAUDRATE 115200 = 0x00000010
BAUDRATE 230400 = 0x00000020
BAUDRATE 460800 = 0x00000040
BAUDRATE 921600 = 0x00000080

Multiple bits may be set according to the capability of the device.

Table 37 - Register — Serial — Supported Baudrates

13 March 2019 Page 73 of 75



=

GEN<I>CAM

Version 1.3

GenCP Standard 4&

On a serial link a baud rate of 9600 must be supported and set at start up so that an initial

communication can be established.

182.Current Baudr at e

Register indicating the currently used baud rate. The register is RW with the exception that only one
baud rate is supported. In this case the register may also be read only.

Offset Hex 004
Length 4
Access Type RW
Support M
Data Type Bitfield
Factory Default 1
Bit offset | Width | Description
(Isb <<x) | (bits) - _ .
0 32 [ dZNNBy u . | dzRNJ U S

BAUDRATE 9600 = 0x00000001
BAUDRATE 19200 = 0x00000002

BAUDRATE 38400 = 0x00000004
BAUDRATE 57600 = 0x00000008
BAUDRATE 115200 = 0x00000010
BAUDRATE 230400 = 0x00000020
BAUDRATE 460800 = 0x00000040
BAUDRATE 921600 = 0x00000080

A single bit may be set according to the current baudrate setting. 0 is an
invalid value.

Table 38 - Register — Serial — Current Baudrate

In case the Heartbeat timeout of a serial device expires the device must fall back to factory default
communication parameters (baud rate) in order to allow further communication with the host.

13 March 2019 Page 74 of 75




GEN<I>CAM

Version 1.3

GenCP Standard

s

1.9.

Heartbeat

In case a serial device supports multiple baud rates the Heartbeat mechanism must be supported in
order to ensure a fall back after a faulty baud rate configuration. In case the device loses the
Heartbeat the link falls back to the default 9600 baud so that the host can re-establish
communication after a switch to a baud rate that is too high. In case the device only supports the
default baud rate the Heartbeat mechanism is optional.

13 March 2019

Page 75 of 75




	Change History
	1. Introduction
	1.1. Motivation
	1.2. Objective
	1.3. Abstract
	1.4. Acronyms
	1.5. References
	1.6. Requirement Terminology

	2. Definitions
	2.1. Device Description File
	2.2. String Encoding
	2.3. Byte and Bit Order
	2.4. GenCP Version
	2.5. CRC
	2.6. Link
	2.7. Channel
	2.7.1. Default Channel


	3. Operation
	3.1. Protocol
	3.1.1. Command & Acknowledge Mechanism
	3.1.2. Pending Acknowledge
	3.1.3. Message Channel
	3.1.3.1. Event ID
	3.1.3.2. GenCP Event ID Codes

	3.1.4. Failure
	3.1.4.1. Corrupt Packet
	3.1.4.2. Timeout
	3.1.4.3. Command Packet Failure
	3.1.4.4. Acknowledge packet failure
	3.1.4.5. Pending Acknowledge Packet Failure


	3.2. Heartbeat
	3.3. GenICam File
	3.3.1. Manifest Table
	3.3.2. Retrieval
	3.3.3. Compression


	4. Packet Layout
	4.1. General Packet Layout
	4.2. Prefix
	4.3. Common Command Data
	4.3.1. Command Packet Layout
	4.3.2. Acknowledge Packet Layout
	4.3.2.1. Status Codes

	4.3.3. Command IDs

	4.4. Command Specific Data
	4.4.1. ReadMem Command
	4.4.2. ReadMem Acknowledge
	4.4.3. WriteMem Command
	4.4.4. WriteMem Acknowledge
	4.4.5. Pending Acknowledge
	4.4.6. ReadMemStacked Command
	4.4.7. ReadMemStacked Acknowledge
	4.4.8. WriteMemStacked Command
	4.4.9. WriteMemStacked Acknowledge
	4.4.10. Event Command
	4.4.11. Event Acknowledge

	4.5. Postfix

	5. Bootstrap Register Map
	5.1. Technology Agnostic Bootstrap Register Map
	5.2. String Registers
	5.3. Conditional Mandatory Registers
	5.4. Register Map
	5.4.1. GenCP Version
	5.4.2. Manufacturer Name
	5.4.3. Model Name
	5.4.4. Family Name
	5.4.5. Device Version (Manufacturer specific)
	5.4.6. Manufacturer Info
	5.4.7. Serial Number
	5.4.8. User Defined Name
	5.4.9. Device Capability
	5.4.10. Maximum Device Response Time (MDRT)
	5.4.11. Manifest Table Address
	5.4.12. SBRM Address
	5.4.13. Device Configuration
	5.4.14. Heartbeat Timeout
	5.4.15. Message Channel ID
	5.4.16. Timestamp
	5.4.17. Timestamp Latch
	5.4.18. Timestamp Increment
	5.4.19. Access Privilege
	5.4.20. Protocol Endianess
	5.4.21. Implementation Endianess
	5.4.22. Device Software Interface Version

	5.5. Generic Tables
	5.5.1. Manifest
	5.5.1.1. Manifest Table
	5.5.1.2. Manifest Entry



	1. Serial Port Implementations
	1.1. Byteorder
	1.2. Channel ID
	1.3. Packet Size
	1.4. Serial Parameters
	1.4.1. Default port parameters
	1.4.2. Changing port parameters

	1.5. Serial Prefix
	1.6. Serial Postfix
	1.7. Packet failure
	1.8. Technology Specific Bootstrap Register Map
	1.8.1. Supported Baudrate
	1.8.2. Current Baudrate

	1.9. Heartbeat


