

 V1.1 CLProtocol Standard Module

GenICam_CLProtocol_Standard.doc Page 1 of 12

GenICam

CLProtocol Module

Using GenApi with CameraLink

 V1.1 CLProtocol Standard Module

GenICam_CLProtocol_Standard.doc Page 2 of 12

Table of Contents

1 OVERVIEW .. 3

2 INSTALLING AND REGISTERING CLPROTOCOL DLLS .. 4

3 SELECTING A CLPROTOCOL DLL AND IDENTIFYING A CAMERA ... 5

4 RETRIEVING AN XML FILE FOR A CAMERA.. 8

5 HANDLING THE BAUD RATE ... 9

6 STANDARDIZED PROGRAMMING INTERFACES ... 10

6.1 ISERIAL INTERFACE ... 10
6.2 CLPROTOCOL INTERFACE .. 10

HISTORY

Version Date Changed by Change

1.0 08.12.2009 Fritz Dierks, Basler First Draft

1.0.1 30.08.2010 Fritz Dierks, Basler Added bootstrap registers

1.1 04.06.2011 Fritz Dierks, Basler Added v1.1 extensions

 V1.1 CLProtocol Standard Module

GenICam_CLProtocol_Standard.doc Page 3 of 12

1 Overview

This module of the GenICam standard describes how to configure CameraLink* using the GenApi module of the
GenICam standard. The problem with CameraLink is that it does not define cameras to be register based. Instead
the CameraLink configuration interface is based on an ISerial interface with allows sending and receiving
blocks of bytes. The GenApi module however requires an IPort interface which allows getting and setting
registers in the camera.

The CLProtocol module defines the interface of a CameraLink protocol driver DLL which must be provided by
the camera manufacturer. The DLL must implement an IPort interface using the ISerial interface as connection
to the camera (see Figure 1).

GenApi

CLProtocol.dll

Camera

Client SW

CCLPort

CLAllSerial.dll

CLSerXXX.dll

IPort

Camera.xml

ISerial

Figure 1 Using the CLProtocol.dll to configure a camera

If a camera is natively register based the CLProtocol DLL is just a simple protocol driver running for example a
binary register access protocol like the CANbus protocol. If however a camera is for example ASCII based the
CLProtocol driver DLL must implement a pseudo register space and provide the corresponding camera
description XML file (see Figure 3).

<IntReg Name="Gain">
<Address>0xffff0001</Address>
<Length>4</Length>
<AccessMode>RW</AccessMode>
<pPort>Port</pPort>
<Cachable>NoCache</Cachable>
<Sign>Signed</Sign>
<Endianess>LittleEndian</Endianess>

</IntReg>Camera

WriteRegister(address, data, len)
{

switch(address)
{
case adrGain: // 0xffff0001

int Gain = extractIntData(data, len);

// set gain via serial port of camera
Camera.SetGain(Gain);
break;

...
}

}

IPort

ISerial

CLProtocol.dll

Camera.xml

Figure 2 Providing a pseudo register space

This CLProtocol driver DLL has a pure C interface and is normally not used directly. Instead the GenICam
reference implementation provides a C++ wrapper class CCLPort deals with tasks like loading and binding of
the best matching driver DLL (see Figure 1). The wrapper class uses the CLAllSerial.dll / CLSerXXX.dll

* CameraLink standard v1.1 provided by the Automated Imaging Association (AiA)

 V1.1 CLProtocol Standard Module

GenICam_CLProtocol_Standard.doc Page 4 of 12

mechanism† defined by the CameraLink standard to communicate with the camera. Note that the wrapper class is
not part of the standard. For more details refer to the CLProtocol tutorial coming with the reference
implementation.

The C-interface of the CLProtocol driver DLL is not operating system dependent, however the compiled DLL is.
Currently the following operating systems are supported:

� Windows XP (Win32) or higher : this operating system MUST be supported

� Windows XP (Win64) or higher : this operating system SHOULD be supported

In order to setup and use a CLProtocol DLL the following steps must be performed:

1. The CLProtocol driver DLLs and any accompanying XML files must be installed and registered in the
system

2. For each frame grabber port the right CLProtocol DLL must be selected and the camera must be
identified

3. A camera description XML file must be retrieved

These steps are described in the following sections. In addition the ISerial interface and the C functions forming
the interface of the CLProtocol driver DLL are explained. Finally some bootstrap registers are defined which the
CLProtocol driver DLL must implement in order to allow a generic mechanism to connect to setup the baud rate
and the camera.

2 Installing and Registering CLProtocol DLLs

The CLProtocol driver DLLs and any corresponding XML files can be installed by the camera vendor’s setup
program to an arbitrary location on the target machine, e.g.:

c:\program files\MyVendor\CLProtocol

XML files accompanying the DLLs are installed directly to that location. For each supported operating system
there is a separate sub-directory with a name defined by this standard were the corresponding DLL must be
installed to. For Win32 the sub-directory’s name is Win32_i86; for Win64 the name is Win64_x86. Here is an
example:

c:\program files\MyVendorDir\CLProtocol # install XML files here
c:\program files\MyVendorDir\CLProtocol\Win32_i86 # install Win32 DLL here
c:\program files\MyVendorDir\CLProtocol\Win64_x64 # install Win64 DLL here

Multiple DLLs with different names can reside in one sub-directory. The DLL name must be of the form *.dll.

The registration is performed by adding the location (i.e. the directory name without trailing backslash) to a list
of locations given in the environment variable GENICAM_CLPROTOCOL, for example:

GENICAM_CLPROTOCOL=c:\program files\MyVendorDir\CLProtocol;c:\temp\MyTest

If the environment variable does not exist it must be created.

If the DLLs are uninstalled the location entry must be removed from the list of locations leaving any others in
place. If no other entry is left the environment variable must be deleted.

While a CLProtocol driver DLL is under development it can be compiled in Debug or Release mode. In order to
simplify the life of the developer the Debug version of a DLL named XXX.dll should be named XXX.debug.dll.
The following rules apply when the DLLs are enumerated by the CCLPort helper class:

� If the CCLPort helper class is compiled in Debug mode a DLL named XXX.dll is loaded only if there is no
corresponding DLL named XXX.debug.dll in the same directory.

� If the CCLPort helper class is compiled in Release mode a DLL named XXX.debug.dll is loaded only if
there is no corresponding DLL named XXX.dll in the same directory.

† Note that for Win64 the naming scheme is CLAllSerial_w64.dll / CLSerXXX_w64.dll where XXX is a 3 letter
abbreviation of the frame grabber vendor’s name.

 V1.1 CLProtocol Standard Module

GenICam_CLProtocol_Standard.doc Page 5 of 12

3 Selecting a CLProtocol DLL and Identifying a Camera

The key problem when setting up the DLL is to identify the manufacturer and model name of the camera
connected to a frame grabber port. This information is required in order to select the right CLProtocol DLL but it
is also required by the driver DLL itself for adapting its behavior to different camera models of the same vendor.

It would be nice if the manufacturer name as well as the model name of an arbitrary CameraLink camera could
be determined automatically just by probing the frame grabber port. However this kind of plug&play mechanism
will stay a dream for CameraLink because for historical reasons there is no standard protocol for the serial port
of CameraLink cameras and cameras of different vendors can behave very differently. Probing a camera with
different protocol variants would take too long and could even drive some camera models in an undefined state
from which they might not recover.

So there is no way around the user selecting at least the camera manufacturer name and thus the CLProtocol
DLL for each frame grabber port manually. After that has been node the DLL can identify the camera in a more
or less automatic way because the vendors should know their cameras well enough in order to automate that task.
Nevertheless if for some reason that automation is not possible the standard provides means to deal with that
situation, too.

The whole identification process is based on string identifiers (IDs) which are enumerated by the system and
(partially) selected by the customers.

DeviceID

The identifier resulting from the camera identification process is called the DeviceID. It contains all data
required to uniquely identify a device and its corresponding CLProtocol driver DLL. This data is assembled in a
string which is composed of tokens separated by the hash ('#') sign:

"DriverDirectory#DriverFileName#Manufacturer#Family#Model#Version#SerialNumber"

The first two tokens describe the directory where the protocol driver DLL is found (without trailing back slash)
and the file name of the DLL. The other tokens are from left to right the camera’s manufacturer, family,
model, version, and serial number. Each of these latter tokens must follow the naming convention for C
variables, i.e. they must match the following regular expression:

[a-zA-Z_][a-zA-Z0-9_]*

Either the serial number or the serial number and the version token can be omitted. Here two examples for valid
DeviceIDs:

"c:\program files\MyVendorDir\Win32_i86#MyDriver.dll#MyVendor#MyFamily1#MyModelA#Ver_2a#SerNo123"
"c:\program files\MyVendorDir\Win32_i86#MyDriver.dll#MyVendor#MyFamily1#MyModelA"

DeviceID Templates

In order to address a subset of possible DeviceIDs a DeviceID template can be formed by the DeviceID from
the right up to but not including the manufacture name.

For example in order to address all cameras of a certain family the corresponding DeviceID template would
looks like this:

"c:\program files\MyVendorDir#MyDriver.dll#MyVendor#MyFamily1"

A DeviceID template is said to match an DeviceID if the left part of the DeviceID string is identical to the
DeviceID template.

For example the template given above would match the following DeviceIDs

"c:\program files\MyVendorDir#MyDriver.dll#MyVendor#MyFamily1#MyModelA#Version_2a#SerNo234"
"c:\program files\MyVendorDir#MyDriver.dll#MyVendor#MyFamily1#MyModelB#Version_2b#SerNo432"

but not this one

"c:\program files\MyVendorDir#MyDriver.dll#MyVendor#MyFamily2#MyModelC#Version_2a#SerNo345"

because the family is different.

 V1.1 CLProtocol Standard Module

GenICam_CLProtocol_Standard.doc Page 6 of 12

Short DeviceID (Templates)

A short DeviceID or short DeviceID template is just a original string with the first two items – the DLL directory
and file name including the trailing hash sign – missing. For example if a DeviceID template reads

"c:\program files\MyVendorDir\Win32_i86#MyDriver.dll#MyVendor#MyFamily1"

the corresponding short DeviceID is

"MyVendor#MyFamily1"

Probing a Device

Ideally a customer being about to setup a frame grabber port is just presented a list of all CLProtocol DLLs
installed in the system, each being represented by the corresponding manufacturer name. However it may not be
possible for each DLL to fully automatically identify the camera attached to the selected port. For those cases the
CLProtocol DLL provides a list of DeviceID templates for the user to select one.

For example the CLProtocol DLL of a VendorA might be able to deal with two camera families Family1 and
Family2 but for example might no be able to automatically distinguish between cameras of the two families,
because they implement very different protocols. In this case VendorA’s CLProtocol driver DLL would supply
the following two DeviceID templates:

"c:\program files\MyVendorDir#MyDriver.dll#VendorA#Family1"
"c:\program files\MyVendorDir#MyDriver.dll#VendorA#Family2"

A VendorB whose DLL can do a fully automated detection of all cameras would only supply a single DeviceID
template like this:

"c:\program files\MyVendorDir#MyDriver.dll#VendorB"

A VendorC however might not bother with automatic identification altogether and just enumerates all camera
models the DLL can deal with:

"c:\program files\MyVendorDir#MyDriver.dll#VendorC#Family1#ModelX"
"c:\program files\MyVendorDir#MyDriver.dll#VendorC#Family1#ModelY"
"c:\program files\MyVendorDir#MyDriver.dll#VendorC#Family2#ModelZ"

In a system were CLProtocol DLLs from vendors A, B, and C are installed at the same time the user setting up a
frame grabber port would get presented the following list of short DeviceID templates to select one:

"VendorA#Family1"
"VendorA#Family2"
"VendorB"
"VendorC#Family1#ModelX"
"VendorC#Family1#ModelY"
"VendorC#Family2#ModelZ"

After the user has selected a DeviceID template the CLProtocol driver DLL should be able to probe and identify
the attached camera using the DeviceID template as a hint. If the identification is successful the CLProtocol
driver DLL returns a full DeviceID string unambiguously identifying the camera found connected to the port.

PortIDs

Before the probing can take place the user has to select a frame grabber port. The ports are enumerated using the
CLAllSerial.dll and the result is presented in form of a list of PortID strings unambiguously identifying a port
in the system.

The CLAllSerial.dll first enumerates all CLSerXXX DLLs found installed in the system, then it enumerates all
frame grabber boards per DLL and finally all port per frame grabber board (see Figure 3). The PortID system
however hides this enumeration hierarchy and presents the result of the enumeration process as a flat list of
PortIDs.

 V1.1 CLProtocol Standard Module

GenICam_CLProtocol_Standard.doc Page 7 of 12

CLAllSerial.dll

CLSerBBB.dllCLSerAAA.dll

Frame Grabber
AAA

FG
BBB_1

FG
BBB_2

Figure 3 How the CLAllSerial.dll enumerates frame grabber ports

A PortID is a string of the following form:

"FrameGrabberManufacturer#PortName"

The token on the left of the hash (‘#’) sign is the frame grabber’s manufacturer name and the token to the right
the port name. Both strings are retrieved via the clGetPortInfo function defined in the CameraLink standard.

If a CompanyZ has for example two frame grabbers installed in a system with two serial ports each the following
list of PortIDs would be result:

"CompanyZ#BoardAPort1"
"CompanyZ#BoardAPort2"
"CompanyZ#BoardBPort1"
"CompanyZ#BoardBPort2"

The standard COM ports of a PC are available via a pseudo frame grabber manufacturer called "COM_Port"
enumerating PortIDs of the following form:

"COM_Port#COM1"
"COM_Port#COM2"
etc.

The COM_Port frame grabber DLL comes as part of the reference implementation.

Another pseudo frame grabber is available named “Local” which is used for ISerial implementations provided
statically without using the enumeration mechanism of the CLAllSerial.DLL. This may for example be used in
embedded systems. In this case a PortID could for example look like this:

"Local#TheOneAndOnlyPort"

The COM_Port frame grabber DLL comes as part of the reference implementation.

Summary

The following list summarizes the steps a client program has to take in order to select a CLProtocol driver DLL
and identify a camera connected to a frame grabber port.

1. Retrieve a list of PortIDs

2. Present the list of PortIDs to the user to select a frame grabber port for configuration

3. Retrieve a list of DeviceID templates for the selected port

4. Present the list of DeviceID templates to the user to select the best matching template

5. Probe the camera using the selected DeviceID template as a hint. If the camera is recognized a
DeviceID is returned unambiguously identifying the camera attached to the selected port

6. Connect to the camera using the DeviceID as identifier.

 V1.1 CLProtocol Standard Module

GenICam_CLProtocol_Standard.doc Page 8 of 12

7. Store the DeviceID for later re-connection.

4 Retrieving an XML File for a Camera

Once the CLProtocol driver DLL is set up and the connection to the camera is established a XML camera
description must be retrieved either from the camera or from the file system.

Because there could be more than one matching XML description, e.g. referring to different GenApi schema
versions, the standard provides a two step approach for retrieving the XML code: First a sorted list of possible
XML descriptions is created, with the best matching description coming first.

Users relying on the automatic just always take the first description to create the GenApi XML node map and
configure the camera. If the user wants more control however he can select another XML description manually
thus overriding the automatic.

XML IDs

Each XML description is identified by a XML ID which has the following form:

"SchemaVersion.1.0@<shortDeviceID>@DeviceVersion.1.2.3"

The XML ID is composed of three tokens delimited by an at ("@") sign.

The first token describes the version number of the GenApi schema the XML description uses. It has the form

"SchemaVersion.<VersionMajor>.<VersionMinor>"

where <VersionMajor> and <VersionMinor> are integers.

The second token is a short DeviceID template. It thus can have one of the following forms

"Manufacturer"
"Manufacturer#Family"
"Manufacturer#Family#Model"
"Manufacturer#Family#Model#Version"
"Manufacturer#Family#Model#Version#SerialNumber"

The third token describes the version number given in the XML description file for the device. It has the form

"XMLVersion.<VersionMajor>.<VersionMinor>.<VersionSubMinor>"

where <VersionMajor>, <VersionMinor>, and <VersionMinor> are integers. Note that the Version from the
DeviceID string is an arbitrary CName and not necessarily identical to the version given in the XML. This makes
for example sense if a XML file for an existing camera is created stepwise, each step covering more for the
camera’s functionality while the camera itself is not changing.

Here is an example for a XML ID denoting a XML description which is valid for a whole family of cameras

"SchemaVersion.1.1@MyVendor#MyFamily1@XMLVersion.1.2.3.xml"

The list of XML IDs is assembled from the following sources:

� The CLProtocol DLL checks which XML descriptions the camera can provide itself. In order to support this
the camera might implement a Manifest register as described in the GigE Vision standard.

� The CLProtocol DLL itself might contain suitable XML description, e.g. compiled in as Windows resource.

� The directory containing the CLProtocol DLL may contains additional XML files. The name of these files
must be <XML ID>.xml, e.g. "SchemaVersion.1.0@MyVendor#MyFamily@XMLVersion.1.2.3.xml"

Note that the retrieval of the XML files stored on the file system is performed by the reference implementation
so the CLProtocol driver DLL does not have to implement that part.

If a XML ID is retrieved two immediate checks are made:

� If the SchemaVersion cannot be handle by the GenApi version used the XML ID is discarded.

� If the DeviceID template contained in the XML ID does not match the current DeviceID the XML ID is
discarded as well.

 V1.1 CLProtocol Standard Module

GenICam_CLProtocol_Standard.doc Page 9 of 12

Example 1: A XML ID

"SchemaVersion.1.2@CameraManufacturer@XMLVersion.1.2.3.xml"

would be rejected by GenICam v2.0 because that version can handle only schema versions v1.0 and v1.1.

Example 2 : If the DeviceID is "MyVendor#Familiy1" a XML ID

"SchemaVersion.1.2@MyVendor#Familiy2@XMLVersion.1.2.3.xml"

would not match (wrong family) and be discarded.

Finally the list of not rejected XML IDs is sorted according to the following rules:

� A higher SchemaVersion number goes first.

� Within the same SchemaVersion a longer DeviceID template goes first

� Within the same SchemaVersion and DeviceID template a higher DeviceVersion number goes first

Example:

"SchemaVersion.1.1@MyVendor#Familiy2@XMLVersion.1.2.0.xml"
"SchemaVersion.1.1@MyVendor#Familiy2@XMLVersion.1.0.0.xml"
"SchemaVersion.1.1@MyVendor@XMLVersion.3.0.0.xml"
"SchemaVersion.1.0@MyVendor@XMLVersion.3.0.0.xml"

The user can select a XML ID (possibly the fist one which is the best matching) and use this to retrieve the XML
description itself. Using this description GenApi can then give access to the camera features.

Summary

The following list summarizes the steps a client program has to take in order to retrieve an XML description for
an already connected camera.

1. Retrieve a sorted list of XML IDs

2. Optionally present the list to the user to select one. The default selection is the first and – due to the
sorting – best matching XML ID

3. Retrieve the XML description associated with the selected XML ID

5 Handling the Baud Rate

A special feature of the camera is the BaudRate. It is special because when changed it must be changed in the
camera and the frame grabber at the same time; otherwise connection to the camera is lost. The frame grabber’s
baud rate can be changed by the CLProtocol DLL via the CLAllSerial DLL’s interface which also provides
means to query a list of possible baud rates supported by the grabber (see section 0)

GenICam therefore defines the BaudRate as standard feature which must be implemented by the CLProtocol
DLL. Besides of the standard baud rates 9600, 19200 etc. a special AutoMax baud rate can be optionally
implemented which is the maximum baud rate the camera and the frame grabber can run with.

The CLProtocol DLL should implement baud rate auto detection, i.e. being able to identify the camera’s baud
rate during probing.

There must be two ways to access the baud rate.

1. The CLProtocol DLL must implement pseudo registers which are accessible via the IPort interface so
the baud rate is exposed via the camera’s GenICam XML file

2. The CLPRotocol DLL must also expose the baud rate via the DLL properties which have been
introduced in v1.1. This is required so that the CLPort wrapper class can boost the baud rate while
downloading the XML file from the camera.

 V1.1 CLProtocol Standard Module

GenICam_CLProtocol_Standard.doc Page 10 of 12

6 Standardized Programming Interfaces

The CLProtocol driver DLL must implement a set of C functions. The necessary header files are part of the
standard.

� CLProtocol.h – declares the C functions to be implemented by the CLProtocol driver DLL

� CLSerialTypes.h – declares some types and constants

� ISerial.h – declares an abstract C++ interface ISerial which is used by the CLProtocol driver DLL to access
the serial port. A C alias of the virtual function table formed by the C++ interface is also given so an
implementation of the CLProtocol driver DLL in pure C is possible.

These header files contain a detailed description of the functions and their parameters which can be extracted
using DoxyGen‡. This section gives an overview and explains how the functions are used.

6.1 ISerial Interface

The CLProtocol driver DLL needs to have access to the frame grabber’s serial port. This is given by a pointer to
an ISerial interface which contains the following methods:

� clSerialRead – use this method to retrieve an array of bytes from the camera with timeout. The functionality
and parameters are the same as with the corresponding function of the CameraLink standard.

� clSerialWrite – use this method to send an array of bytes to the camera with timeout.

� clGetSupportedBaudRates – this method provides the set of baud rates supported by the frame grabber
board in form of a bit field.

� clSetBaudRate – this method sets the baud rate of the frame grabber board

The functionality and parameters of the four methods listed above are the same as with the corresponding
function of the CameraLink standard. Because boards supporting only CameraLink v1.0 must be supported no
advanced functions like GetNumBytesAvail can be supported.

6.2 CLProtocol Interface

The functions to be implemented by the CLProtocol driver DLL are explained along the use cases introduced in
the previous sections. Note that the client of the interface described here is typically the wrapper class CCLPort
contained in the reference implementation and not the end user’s code. However since the wrapper class is not
part of the standard it would be possible by a user to write their own client code from scratch.

Retrieving a List of DeviceID Templates

The function clpGetShortDeviceIDTemplates is used to collect a list of DeviceID templates. The environment
variable GENICAM_CLPROTOCOL contains a list of locations were CLProtocol driver DLL are stored. The
wrapper class loads each of those DLLs and calls clpGetShortDeviceIDTemplates retrieving for each DLL a list
of short DeviceID templates the respective DLL will understand. The combined short DeviceID templates
decorated with the location of the DLL where they originate from for the desired list of DeviceID templates.

Note that for calling clpGetShortDeviceIDTemplates no ISerial interface needs to be supplied.

Probing, Identifying and Re-Connecting a Camera

The function clpProbeDevice is called with an ISerial interface and a DeviceID template as input parameter.
The function attempts to identify the camera attached to the respective frame grabber port using the DeviceID
template as hint. If the function is successful it returns a DeviceID as well as a Cookie (see below).

If the DeviceID is already known the function clpProbeDevice can also be used to re-connect the camera. This
is simply done by handing in the DeviceID instead of a DeviceID template. It is the responsibility of the
CLProtocol driver DLL to distinguish between the two use cases. Re-connecting instead of probing again makes

‡ A tool to create HTML documentation from C/C++ code commented using a special tags. See
www.doxygen.org

 V1.1 CLProtocol Standard Module

GenICam_CLProtocol_Standard.doc Page 11 of 12

sense because re-connecting is normally much faster than probing. Generally an application should probe and
identify a camera only once and then store the DeviceID for re-connect.

By calling clpProbeDevice a connection to the camera is opened. This connection is identified by the Cookie
which must be handed in for any subsequent calls to the CLProtocol driver DLL. The DLL may use the Cookie
to persist any data while the connection is open.

Closing a Connection to the Camera

In order to close the connection to the camera call clpDisconnect handing in the Cookie. On this call the DLL
must free all persistent data attached to the connection and the Cookie becomes invalid.

Retrieving the XML Description for a Camera

Calling clpGetXMLIDs returns a list of XML IDs exposing what kind of XML descriptions the camera and/or
the DLL itself is able to provide. Note that this does not include XML descriptions stored on the file system
beside the DLL. These XML IDs belonging to these XML files are added by the wrapper class CCLPort.

The XML IDs returned from calling clpGetXMLIDs are not sorted. This is also done by the wrapper class.

If the user has selected a XML ID originating from the call to clpGetXMLIDs he can retrieve the actual XML
description by calling clpGetXMLDescription handing in the XML ID as a parameter. Again, the wrapper class
handles XML IDs belonging to XML files stored on the file system.

The best matching XML ID is typically only determined once and then stored along with the DeviceID for re-
connection. The wrapper class caches XML descriptions retrieved during the first connect and thus makes sure
that unnecessary XML file downloads from the camera are avoided.

Accessing Camera Registers

Camera Registers are read and written to using the functions clpReadRegister and clpWriteRegister. Both
function calls require an ISerial interface, a Cookie and a timeout which should by default be set to 500ms.

For commands taking a longer time to complete than the typical timeout the function clpWriteRegister can return
a special value CL_ERR_PENDING_WRITE. In this case the client code must call clpContinueWriteRegister
which either completes the call or returns CL_ERR_PENDING_WRITE again. The function
clpContinueWriteRegister can be called with a cancel flag thus abandoning the command processing. After
cancelling a call the camera must be in a state to accept further commands without problem. The wrapper class
handles the whole pending business under the hood so the customer will normally not notice it.

Error Handling

Each call to one of the DLL’s functions returns an error code which normally will be CL_ERR_NO_ERR (=0).
The error codes can origin from different places each living in a separate number range. A negative number
indicates an error, a positive number a success.

� Standard error codes from the CLSerXXX interface definition: ±10***

� Standard error codes from the CLProtocol interface definition: ±20***

� Custom error codes from the CLProtocol implementations: ±30***

All other numbers are reserved

The CLProtocol driver DLL implements the function clpGetErrorText which when given a custom error code
must return an error description message in English language. A similar function is also implemented by the
CLSerXXX DLLs. If the wrapper class receives a negative return code is first asks the CLProtocol driver DLL
for a error description text. If that call does not return a valid error message, it calls CLAllSerial DLL which in
turn asks the CLSerXXX DLL and finally it tries to look-up a message text in a list of standard error messages.

Interface version

In order to prepare for future extensions of the CLProtocol DLL the function clpGetCLProtocolVersion must
be implemented returning the major and minor version number of the interface. Different major version numbers
make two protocols incompatible. A higher minor version number makes the interface backwards compatible to
one with a lower minor version.

 V1.1 CLProtocol Standard Module

GenICam_CLProtocol_Standard.doc Page 12 of 12

The current version number is major.minor = 1.1.

Setting and Getting Properties of the CLProtocol DLL (v1.1)

The CLPRotocol DLL itself can have properties which can be get and set by the function pair clpGetParam and
clpSetParam. The properties available are defined by the enumeration CLP_PARAMS.

CLP_LOG_LEVEL and CLP_LOG_CALLBACK are used to set a logging target and a log level. This
allows feeding debug messages into GenICam’s standard logging system.

CLP_DEVICE_BAUDERATE and CLP_DEVICE_SUPPORTED_BAUDERATES allow setting the baud
rate of the camera as well as the frame grabber (see ISerial interface).

Initializing the CLProtocol DLL (v1.1)

The functions clpInitLib and clpCloseLib are called after loading the CLPRotocol DLL and shortly before
unloading it.

