GEN<I>CAM

bV
“;E?,A?

V1.0 ‘ CLProtocol Standard Module

GenlCam

CLProtocol Module

Using GenApi with CameraLink

GEN<I>CAM

GenlCam_CLProtocol_Standard.doc Page 1 of 11

GEN<I>CAM

V1.0

CLProtocol Standard Module

Table of Contents

1 OVERVIEW

2 INSTALLING AND REGISTERING CLPROTOCOL DLLS

3 SELECTING A CLPROTOCOL DLL AND IDENTIFYING A CAMERA

4 RETRIEVING AN XML FILE FOR A CAMERA

5 STANDARDIZED PROGRAMMING INTERFACES

51 ISERIAL INTERFACE
5.2 CLPROTOCOLINTERFACE

6 HANDLING THE BAUD RATE

HISTORY
Version |Date Changed by Change
1.0 08.12.2009 Fritz Dierks, Basler First Draft

GenlCam_CLProtocol_Standard.doc

Page 2 of 11

-

GEN<I>CAM -‘797:

V1.0 ‘ CLProtocol Standard Module

1 Overview

This module of the GenlCam standard describes bawfigure CameraLinkusing the GenApi module of the
GenlCam standard. The problem with CameralLinkas ithdoes not define cameras to be register basstbad
the CameralLink configuration interface is basedanhSerial interface with allows to send and receive blocks
of bytes. The GenApi module however required Rort interface which allows to get and set registerthin
camera.

The CLProtocol module defines the interface of an€aalLink protocol driver DLL which must be providbg
the camera manufacturer. The DLL must implemeniPamt interface using the ISerial interface as @mtion
to the camera (see Figure 1).

O

IPort',

v
CLProtocol.dll

e
ISerial
CLAlISerialdll |

|

Figure 1 Using the CLProtocol.dll to configure angaa
If a camera is natively register based the CLPailtBd L is just a simple protocol driver running fekample a
binary register access protocol like the CANbusgwol. If however a camera is for example ASClidzhthe

CLProtocol driver DLL must implement a pseudo regisspace and provide the corresponding camera
description XML file (see Figure 3).

? IPort

W iteRegi ster(address, data, len)

swi tch(address)
case o

int Gain = extractlntData(data, len);

/] set gain via serial port of canera
Canera. Set Gain(Gain);

br eak;
} <l nt Reg Name=" ">
} <Addr ess> </ Addr ess>

<Lengt h>4</ Lengt h>
<AccessMde>RW&/ AccessMode>

ISerial <pPor t >Por t </ pPor t >

eria <Cachabl e>NoCache</ Cachabl e>
<Si gn>Si gned</ Si gn>
<Endi aness>Li t t| eEndi an</ Endi aness>
D Camera </ I nt Reg>
Figure 2 Providing a pseudo register space

This CLProtocol driver DLL has a pure C interface and is normally not useectly. Instead th&enl Cam
reference implementation provides a C++ wrapper cla€€L Port deals with tasks like loading and binding of
the best matching driver DLL (see Figure 1). Thepper class uses thel AllSerial.dll / CL Ser XXX.dll

" CameraLink standard v1.1 provided by the Automéatealjing Association (AiA)
GenlCam_CLProtocol_Standard.doc Page 3 of 11

GEN<i>CAM g{p

V1.0 ‘ CLProtocol Standard Module

mechanisrhdefined by the CameraLink standard to communiaétte the camera. Note that the wrapper class is
not part of the standard. For more details refertte CLProtocol tutorial coming with the reference
implementation.

The C-interface of the CLProtocol driver DLL is noperating dependent, however the compiled DLL is.
Currently the following operating systems are sujgzh

= Windows XP (Win32) or higher : this operating syst®UST be supported
= Windows XP (Win64) or higher : this operating syst8HOULD be supported

In order to setup and use a CLProtocol DLL theofelhg steps must be performed:

1. The CLProtocol driver DLLs and any accompanying XfKles must be installed and registered in the
system

2. For each frame grabber port the right CLProtocolLDhust be selected and the camera must be
identified

3. A camera description XML file must be retrieved

These steps are described in the following sectionaddition the ISerial interface and the C fumes forming
the interface of the CLProtocol driver DLL are eaipked. Last but not least there is a section on twohandle
the baud rate.

2 Installing and Registering CLProtocol DLLs

The CLProtocol driver DLLs and any corresponding Xfiles can be installed by the camera vendor'siget
program to an arbitrary location on the target mazhe.g.:

c:\program fil es\ MyVendor\ CLPr ot ocol

XML files accompanying the DLLs are installed ditgdo that location. For each supported operasygtem

there is a separate sub-directory with a name eefiy this standard were the corresponding DLL nist
installed to. For Win32 the sub-directory’s nam&Jm32_i86; for Win64 the name i8Vin64 x86. Here is an
example:

c:\program fil es\ MyVendor Di r\ CLPr ot ocol # install XM files here
c:\program fil es\ MyVendor Di r\ CLPr ot ocol \ Wn32_i 86 # install Wn32 DLL here
c:\program fil es\ M/VendorDi r\ CLProt ocol \ Wn64_x64 # install Wn64 DLL here
Multiple DLLs with different names can reside ineosub-directory. The DLL name must be of the férdil.

The registration is performed by adding the locafice. the directory name without trailing baclssiato a list
of locations given in the environment varia@&NICAM _CLPROTOCOL, for example:

GENI CAM_CLPROTOCOL=c: \ program fi | es\ MyVendor Di r\ CLProt ocol ; c: \'t enp\ MyTest
If the environment variable does not exist it mustcreated.

If the DLLs are uninstalled the location entry mbhstremoved from the list of locations leaving atlgers in
place. If no other entry is left the environmentiable must be deleted.

While a CLProtocol driver DLL is under developméntan be compiled in Debug or Release mode. lemoia
simplify the life of the developer the Debug versiaf a DLL hamed XXX.dll should be named XXX.dehdlg.
The following rules apply when the DLLs are enuntenldby the CCLPort helper class:

= If the CCLPort helper class is compilediebug mode a DLL named XXX.dll is loaded only if thegerio
corresponding DLL named XXX.debug.dll in the sanrecatory.

= If the CCLPort helper class is compiled Release mode a DLL named XXX.debug.dll is loaded only if
there is no corresponding DLL named XXX.dlIl in teme directory.

" Note that for Win64 the naming scheme is CLAIlISEnv64.dll / CLSerXXX_w64.dll where XXX is a 3 lett
abbreviation of the frame grabber vendor’'s name.

GenlCam_CLProtocol_Standard.doc Page 4 of 11

GEN<i>CAM W

V1.0 ‘ CLProtocol Standard Module '

3 Selecting a CLProtocol DLL and Identifying a Camera

The key problem when setting up the DLL is to idfgnthe manufacturer and model name of the camera
connected to a frame grabber port. This informaisarequired in order to select the right CLProtdabL but it
is also required by the driver DLL itself for adimgtits behavior to different camera models ofshene vendor.

It would be nice if the manufacturer as well as thedel name of an arbitrary CameraLink camera cbeld
determined automatically just by probing the fragnabber port. However this kind of plug&play mecisam
will stay a dream for CameralLink because for histreasons there is no standard protocol forsth@l port
of CameraLink cameras and cameras of different @endan behave very differently. Probing a cameith w
different protocol variants would take too long ammiild even drive some camera models in an undeBtete
from which they would recover.

So there is no way around the user selecting at th@ camera manufacturer name and thus the Gidiot
DLL for each frame grabber port manually. Havingedahat the DLL can identify the camera in a maréess
automatic way because the vendors should know tlaiteras well enough in order to automate that. task
Nevertheless it that automation is not possiblesfame reason the standard provides means to dtakhait
situation, too.

The whole identification process is based on stitemtifiers (IDs) which are enumerated by the eystand
(partially) selected by the customers.
DevicelD

The identifier resulting from the camera identifioa process is called thBevicelD. It contains all data
required to uniquely identify a device and its esponding CLProtocol driver DLL. This data is ask= in a
string which is composed of tokens separated byésé (‘#) sign:

"DriverDirectory#DriverFi | eNane#Manuf act ur er #Fani | y#Model #Ver si on#Ser i al Nunber "

The first two tokens describe thé ectory where the protocol driver DLL is found (withouaiing back slash)
and the ile name of the DLL. The other tokens are from left to tighe camera’snanufacturer, family,
model, version, andserial number. Each of these latter tokens must follow the na@mionvention for C
variables, i.e. they must match the following reguwxpression:

[a-zA-Z_][a-zA-Z20-9_]*

Either the serial number or the serial number &edversion token can be omitted. Here two exaniplegalid
DevicelDs:

"c:\program fil es\ MyVendorDi r\ Wn32_i 86#M/Dri ver. dl | #M/Vendor #M/Fani | y1#M/Model A#Ver _2a#Ser No123"
"c:\program fil es\ My/Vendor Di r\ Wn32_i 86#M/Dri ver. dl | #M/Vendor #MW/Fami | y1#M/Model A"

Devicel D Templates

In order to address a subset of possible DevicelDsvicel D template can be formed by the DevicelD from
the right up to but not including the manufactuaene.

For example in order to address all cameras ofr@inefamily the corresponding DevicelD templateuleb
looks like this:

"c:\program fil es\ M/Vendor Di r#M/Dri ver. dl | #M/Vendor #MW/Fami | y1"

A DevicelD template is said tmatch an DevicelD if the left part of the DevicelD stiris identical to the
DevicelD template.

For example the template given above would matetidhowing DevicelDs

"c:\program fil es\ MyVendor D r#M/Dri ver. dl | #M/Vendor #M/Fani | y1#M/Model A#Ver si on_2a#Ser No234"
"c:\program fil es\ M/Vendor D r#M/Dri ver. dl | #M/Vendor #M/Fani | y1#M/Model B#Ver si on_2b#Ser No432"

but not this one

"c:\program fil es\ MyVendor Di r #MyDri ver. dl | #MyVendor #MyFami | y2#M/Model C#Ver si on_2a#Ser No345"

because the family is different.

GenlCam_CLProtocol_Standard.doc Page 5 of 11

-

GEN<I>CAM .‘797:

V1.0 ‘ CLProtocol Standard Module

Short Devicel D (Templates)

A short DevicelD or short DevicelD template is jaspriginal string with the first two items — thé.Ddirectory
and file name including the trailing hash sign ssimg. For example if a DevicelD template reads

"c:\program fil es\ MyVendorDi r\ Wn32_i 86#M/Dri ver. dl | #M/Vendor #MW/Fami | y1"
the corresponding short DevicelD is

"MyVendor #MyFami | y1"

Praobing a Device

Ideally a customer being about to setup a framélgaport is just presented a list of all CLProtobaLs
installed in the system, each being representetidogorresponding manufacturer name. However it nudye
possible for each DLL to fully automatically idefgtthe camera attached to the selected port. Feseticases the
CLProtocol DLL provides a list of DevicelD tempiatfor the user to select one.

For example the CLProtocol DLL of a VendorA migh &ble to deal with two camera families Familyl and
Family2 but for example might no be able to autécadly distinguish between cameras of the two faamil
because they implement very different protocolsthia case VendorA’s CLProtocol driver DLL wouldpgly

the following two DevicelD templates:

"c:\program fil es\ My/Vendor Di r #MyDri ver . dl | #Vendor A#Fami | y1"
"c:\program fil es\ MyVendor D r#M/Dri ver. dl | #Vendor A#Fani | y2"

A VendorB whose DLL can do a fully automated deatecbf all cameras would only supply a single DeViz
template like this:

"c:\program fil es\ MyVendor Di r #My/Dri ver. dl | #Vendor B"

A VendorC however might have not bothered with matc identification altogether and just enumeratis
camera models the DLL can deal with:

"c:\program fil es\ MyVendor D r#M/Dri ver. dl | #Vendor C#Fani | y1#Model X"
"c:\program fil es\ MyVendor Di r #My/Dri ver. dl | #Vendor C#Fami | y1#NModel Y"
"c:\program fil es\ MyVendor Di r #My/Dri ver. dl | #Vendor C#Fami | y2#NModel 2"

In a system were CLProtocol DLLs from vendors AaBd C are installed at the same time the usengetp a
frame grabber port would get presented the follgwist of short DevicelD templates to select one:

"Vendor A#Fami | y1"
"Vendor A#Fanmi | y2"
"Vendor B"

"Vendor C#Fanmi | y1#Model X"
"Vendor C#Fami | y1#Model Y"
"Vendor C#Fani | y2#Model 2"

After the user has selected a DevicelD templateCthierotocol driver DLL should be able ppobe andidentify
the attached camera using the DevicelD templata tast. If the identification is successful the CLProtbco
driver DLL returns a full DevicelD string unambigusly identifying the camera found connected toptbs.

PortlDs

Before the probing can take place the user hasetectsa port. The ports are enumerated using the
CLAllSerial.dll and the result is presented in form of a lisPoftlD strings unambiguously identifying a port
in the system.

The CLAlISerial.dll first enumerates all CLSerXXXLDs found installed in the system, then it enumesall
frame grabber boards per DLL and finally all poer frame grabber board (see Figure 3). The Poryddem
however hides this enumeration hierarchy and ptesttre result of the enumeration process as distabf
PortIDs.

GenlCam_CLProtocol_Standard.doc Page 6 of 11

GEN<i>CAM W

V1.0 ‘ CLProtocol Standard Module

v
g

CLSerAAAdII CLSerBBB.dIl
FG FG
o) (o

| I 4\:
a % ae
Figure 3 How the CLAllSerial.dll enumerates framaliher ports

A PortID is a string of the following form:
"FraneG abber Manuf act ur er #Por t Nanme"

The token on the left of the hash (‘#') sign is freme grabber's manufacturer name and the tokeéhetsight
the port name. Both strings are retrieved viact@etPortl nfo function defined in the CameraLink standard.

If a CompanyZ has for example two frame grabbestalled in a system with two serial ports eachftiiewing
list of PortIDs would be result:

" ConpanyZ#Boar dAPort 1"
" ConpanyZ#Boar dAPort 2"
" ConpanyZ#Boar dBPort 1"
" ConpanyZ#Boar dBPor t 2"

The standard COM ports of a PC are available yiseudo frame grabber manufacturer call€®M _Port"
enumerating PortIDs of the following form;

" COM_Por t #COML"
" COM_Por t #COMVR"
etc.
The COM_Port frame grabber DLL comes as part oféference implementation.

Another pseudo frame grabber is available namedadl’owhich is used for ISerial implementations po®d
statically without using the enumeration mechanifrthe CLAIlISerial.DLL. This may for example be dsi
embedded systems. In this case a PortID couldxamele look like this:

"Local #TheOneAndOnl yPort "

The COM_Port frame grabber DLL comes as part oféference implementation.

Summary

The following list summarizes the steps a cliemtgram has to take in order to select a CLProtogeed DLL
and identify a camera connected to a frame grajder

1. Retrieve a list of PortIDs

2. Present the list of PortIDs to the user to seldcame grabber port for configuration

3. Retrieve a list of DevicelD templates for the stddgort

4. Present the list of DevicelD templates to the tseselect the best matching template

5. Probe the camera using the selected DevicelD teengla a hint. If the camera is recognized a

DevicelD is returned unambiguously identifying tteamera attached to the selected port

6. Connect to the camera using the DevicelD as identif

GenlCam_CLProtocol_Standard.doc Page 7 of 11

-

GEN<I>CAM .‘797:

V1.0 ‘ CLProtocol Standard Module

7. Store the DevicelD for later re-connection.

4 Retrieving an XML File for a Camera

Once the CLProtocol driver DLL is set up and thereection to the camera is established a XML camera
description must be retrieved either from the canerfrom the file system.

Because there could be more than one matching XkHcription, e.g. referring to different GenApi safee
versions, the standard provides a two step apprimatetrieving the XML code: First a sorted list mossible
XML descriptions is created, with the best matctdiegcription coming first.

Users relying on the automatic just always takefits¢ description to create the GenApi XML nodeprand
configure the camera. If the user wants more cbhwaever he can select another XML description nadlg
thus overriding the automatic.
XML IDs
Each XML description is identified by>M L 1D which has the following form:
"SchemaVer si on. 1. 0@shor t Devi cel D>@evi ceVersion. 1. 2. 3"
The XML ID is composed of three tokens delimitedaoyat ("@") sign.
The first token describes the version number of@keApi schema the XML description uses. It hasfdine
" SchemaVer si on. <Ver si onMaj or >. <Ver si onM nor >"
where <VersionMajor> and <VersionMinor> are integer
The second token is a short DevicelD templatéads ttan have one of the following forms
"Manuf acturer"
"Manuf act ur er #Fam | y"
" Manuf act ur er #Fam | y#Model "
" Manuf act ur er #Fami | y#Model #Ver si on"
"Manuf act ur er #Fami | y#Model #Ver si on#Ser i al Nunber "
The third token describes the version number gimehe XML description file for the device. It h#tge form

" XM.Ver si on. <Ver si onMaj or >. <Ver si onM nor >. <Ver si onSubM nor >"

where <VersionMajor>, <VersionMinor>, and <Versioimdr> are integers. Note that the Version from the
DevicelD string is an arbitrary CName and not neagly identical to the version given in the XMLhi§ makes
for example sense if a XML file for an existing cana is created stepwise, each step covering moréhéo
camera'’s functionality while the camera itself @& nhanging.

Here is an example for a XML ID denoting a XML degtion which is valid for a whole family of camera
"SchemaVer si on. 1. 1@¥Vendor #MyFam | y1@XM.Ver si on. 1. 2. 3. xm "
The list of XML IDs is assembled from the followisgurces:

= The CLProtocol DLL checks which XML descriptiongtbamera can provide itself. In order to suppast th
the camera might implementdanifest register as described in the GigE Vision standard.

= The CLProtocol DLL itself might contain suitable XMliescription, e.g. compiled in as Windows resource

= The directory containing the CLProtocol DLL may tains additional XML files. The name of these files
must be<XML ID>.xml, e.g." SchemaVer si on. 1. 0@ Vendor #MyFani | y@M.Ver si on. 1. 2. 3. xm "

Note that the retrieval of the XML files stored the file system is performed by the reference imaletation
so the CLProtocol driver DLL does not have to imnpéat that part.

If a XML ID is retrieved two immediate checks arache:
= |fthe SchemaVersion cannot be handle by the Geréygion used the XML ID is discarded.

= If the DevicelD template contained in the XML ID etonot match the current DevicelD the XML ID is
discarded as well.

GenlCam_CLProtocol_Standard.doc Page 8 of 11

-

GEN<I>CAM .‘797:

V1.0 ‘ CLProtocol Standard Module

Example 1: A XML ID

"SchemaVer si on. 1. 2@caner aManuf act ur er @M_.Versi on. 1. 2. 3. xm "
would be rejected by GenlCam v2.0 because thatorecain handle only schema versions v1.0 and v1.1.
Example 2 : If the DevicelD iswVendor #Fani 1 i y1" a XML ID

" SchemaVer si on. 1. 2@¥Vendor #Fam | i y2@M_Ver si on. 1. 2. 3. xm "

would not match (wrong family) and be discarded.

Finally the list of not rejected XML IDs is sortadcording to the following rules:
= A higher SchemaVersion number goes first.
= Within the same SchemaVersion a longer DevicelDptate goes first
= Within the same SchemaVersion and DevicelD temg@dtggher DeviceVersion number goes first
Example:

"SchemaVer si on. 1. 1@¥Vendor #Fam | i y2@M_-Ver si on. 1. 2. 0. xm "

"SchemaVer si on. 1. 1@¥Vendor #Fam | i y2@M_-Ver si on. 1. 0. 0. xm "

"SchemaVer si on. 1. 1@¥ Vendor @M_Ver si on. 3. 0. 0. xm "

" SchemaVer si on. 1. 0@W¥ Vendor @M_Ver si on. 3. 0. 0. xm "
The user can select a XML ID (possibly the fist arféch is the best matching) and use this to retrine XML
description itself. Using this description GenApihcthen give access to the camera features.
Summary

The following list summarizes the steps a cliemtgpam has to take in order to retrieve an XML digsion for
an already connected camera.

1. Retrieve a sorted list of XML IDs

2. Optionally present the list to the user to selew.orhe default selection is the first and — dutheo
sorting — best matching XML 1D

3. Retrieve the XML description associated with thiesed XML 1D

5 Standardized Programming Interfaces

The CLProtocol driver DLL must implement a set off@ctions. The necessary header files are pathef
standard.

= CLProtocol.h — declares the C functions to be implemented byahProtocol driver DLL
= CLSerialTypesh — declares some types and constants

= |Serial.h — declares an abstract C++ interface ISerial whiaksed by the CLProtocol driver DLL to access
the serial port. A C alias of the virtual functiteble formed by the C++ interface is also givenaso
implementation of the CLProtocol driver DLL in puteis possible.

These header files contain a detailed descriptfotine functions and their parameters which can Xieaeted
using DoxyGeh This section gives an overview and explains Hesvftinctions are used.

5.1 ISerial Interface

The CLProtocol driver DLL need to have access @ftame grabber’s serial port. This is given byoinfer to
anlSerial interface which contains the following methods:

= clSerialRead — use this method to retrieve an array of bytemfthe camera with timeout. The functionality
and parameters are the same as with the correspphutiction of the Cameralink standard.

¥ A tool to create HTML documentation from C/C++ eatbmmented using a special tags. See
www.doxygen.org

GenlCam_CLProtocol_Standard.doc Page 9 of 11

GEN<i>CAM)j(‘q:

V1.0 ‘ CLProtocol Standard Module v

= clSerialWrite — use this method to send an array of bytes tedhgera with timeout.

= clGetSupportedBaudRates — this method provides the set of baud rates stpgdyy the frame grabber
board in form of a bit field.

= clSetBaudRate — this method sets the baud rate of the framebgralboard

The functionality and parameters of the four methtidted above are the same as with the correspgndi
function of the CameralLink standard. Because bosuggorting only CameraLink v1.0 must be supported
advanced functions like GetNumBytesAvail are sufguhr

5.2 CLProtocol Interface

The functions to be implemented by the CLProtocoledt DLL are explained along the use cases intcedun
the previous sections. Note that the client ofitiberface described here is typically the wrappassCCL Port
contained in the reference implementation and Ineteind user’s code. However since the wrapper dasst
part of the standard it would be possible by a tsevrite their own client code from scratch.

Retrieving a List of Devicel D Templates

The functionclpGetShortDevicel DTemplates is used to collect a list of DevicelD templateseTdnvironment
variable GENICAM_CLPROTOCOL contains a list of Iticas were CLProtocol driver DLL are stored. The
wrapper class loads each of those DLLs and cgliSeiShortDevicelDTemplates retrieving for each D list

of short DevicelD templates the respective DLL wilhderstand. The combined short DevicelD templates
decorated with the location of the DLL where theigimate from for the desired list of DevicelD telaes.

Note that for calling clpGetShortDevicelDTemplatesiSerial interface needs to be supplied.

Probing, Identifying and Re-Connecting a Camera

The functionclpProbeDevice is called with an ISerial interface and a Devicadnplate as input parameter.
The function attempts to identify the camera attacto the respective frame grabber port using teeid2ID
template as hint. If the function is successfuéttirns a DevicelD as well as a Cookie (see below).

If the DevicelD is already known the functiotpProbeDevice can also be used to re-connect the camera. This
is simply done by handing in the DevicelD insteddaoDevicelD template. It is the responsibility tife
CLProtocol driver DLL to distinguish between theotwse cases. Re-connecting instead of probing agakes
sense because re-connecting is normally much fistarprobing. As a general run an application Ehpwbe

and identify a camera only once and then stor®thgcelD for re-connect.

By calling clpProbeDevice a connection to the carieropened. This connection is identified by Gmokie
which must be handed in for any subsequent calleedCLProtocol driver DLL. The DLL may use the ®ad
to persist any data while the connection is open.

Closing a Connection to the Camera
In order to close the connection to the cameraatplbisconnect handing in the Cookie. On this call the DLL
must free all persistent data attached to the adimmeand the Cookie becomes invalid.

Retrieving the XML Description for a Camera

Calling clpGetXM LIDs returns a list of XML IDs exposing what kind of XMlescriptions the camera and/or
the DLL itself is able to provide. Note that thieed not include XML descriptions stored on the fijestem
beside the DLL. These XML IDs belonging to these IXMes are added by the wrapper class CCLPort.

The XML IDs returned from calling clpGetXMLIDs ar®t sorted. This is also done by the wrapper class.

If the user has selected a XML ID originating freine call to clpGetXMLIDs he can retrieve the act¥ML
description by callinglpGetXM L Description handing in the XML ID as a parameter. Again, thapper class
handles XML IDs belonging to XML files stored oretfile system.

The best matching XML ID is typically only deterraish once and then stored along with the DevicelDrder
connection. The wrapper class caches XML descriptietrieved during the first connect and thus rmakee
that unnecessary XML file downloads from the canseavoided.

GenlCam_CLProtocol_Standard.doc Page 10 of 11

GEN<i>CAM)j(‘q:

V1.0 ‘ CLProtocol Standard Module v

Accessing Camer a Registers

Camera Registers are read and written to usinguhetions clpReadRegister and clpWriteRegister. Both
function calls require an ISerial interface, a Gednd a timeout which should by default be s&aoms.

For commands taking a longer time to complete thartypical timeout the function clpWriteRegistanaeturn

a special valu€L_ERR_PENDING_WRITE. In this case the client code must call clpCorg\WriteRegister
which either completes the call or returns CL_ERENPING_WRITE again. The function
clpContinueWriteRegister can be called with a chifleg thus abandoning the command processing.rAfte
cancelling a call the camera must be in a statectept further commands without problem. The wrapfsss
handles the whole pending business under the tmtitescustomer will normally not notice it.

Error Handling

Each call to one of the DLL'’s functions returnsearor code which normally will be CL_ERR_NO_ERR)=0
The error codes can origin from different placesheliving in a separate number range. A negativenlver
indicates an error, a positive number a success.

= Standard error codes from the CLSerXXX interfacéniteon: £10***
= Standard error codes from the CLProtocol interfdeinition: £20***
= Custom error codes from the CLProtocol implemeaoteti+30***

All other numbers are reserved

The CLProtocol driver DLL implements the functiolpGetError Text which when given a custom error code
must return an error description message in Endéisguage. A similar function is also implementadtbhe
CLSerXXX DLLs. If the wrapper class receives a nagareturn code is first asks the CLProtocol drifd L
for a error description text. If that call does netturn a valid error message, it calls CLAIISefdlL which in
turn asks the CLSerXXX DLL and finally it tries book-up a message text in a list of standard emessages.

Interface version

In order to prepare for future extensions of theP@itocol DLL the functiorclpGetCL ProtocolVersion must

be implemented returning the major and minor vergsiomber of the interface. Different major versiambers
make two protocols incompatible. A higher minorsien number makes the interface backwards compattibl
one with a lower minor version.

The current version number is major.minor = 1.0.

6 Handling the Baud Rate

A special feature of the camera is BaudRate. It is special because when changed it must beggthin the
camera and the frame grabber at the same timenvaieeconnection to the camera is lost. The franablger's
baud rate can be changed by the CLProtocol DLLtké& CLAIllISerial DLL’s interface which also provides
means to query a list of possible baud rates stgqduy the grabber.

GenlCam therefore defines the BaudRate as starfdatdre which must be implemented by the CLProtocol
DLL. Besides of the standard baud rates 9600 etpeaialAutoM ax baud rate can be optionally implemented
which is the maximum baud rate the camera andréimed grabber can run with.

The CLProtocol DLL should implement baud ratego detection, i.e. being able to identify the camera’s baud
rate during probing.

GenlCam_CLProtocol_Standard.doc Page 11 of 11

