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THIS IS THE FIRST IN A SERIES of articles 
intended to provide a short introduction to 
Machine Vision. These articles will focus on 
quality control on the factory floor, which is 
one of the most important application areas 
for Machine Vision, dealing with well-defined 
objects of interest in a well-defined, con-
trolled environment. This situation is a well-
suited background for the explanation of the 
fundamental design-rules and procedures for 
successful machine vision solutions. Machine 
Vision, however, also covers a broad range 
of outdoor use-cases ranging from guided 
harvesters chopping crop to open-pit mining. 
In comparison with applications in industry, 
much more variation may occur in the scene 
and has to be tolerated by the machine vision 
system, such as changing lighting conditions 
or foreign objects. Likewise, some applica-
tions in logistics see a huge variation of parts 
to be processed by the system, and industrial 
robot vision poses certain challenges related 
to the depth of the scene. The fundamental 
design-rules for successful machine vision, 
however, are basically the same, whatever 
the task may be.

First and foremost it is important to accept 
that machine vision systems have to be 
carefully chosen with the specific needs of 
the individual application in mind. Seem-
ingly identical tasks, like reading a barcode, 
nevertheless may require quite different 
equipment and sometimes even different 
algorithms. Printed codes on flat paper may 
call for a different approach than laser-en-
graved code on a glass bottle. Characters 

printed with an inkjet may need additional 
pre-processing compared to offset-printed 
characters. Thus, a precise definition of the 
assignment is always helpful. Many machine 
vision systems are unique solutions, carefully 
developed in individual projects and tailored 
to the specific needs of the application. In 
such cases, a detailed specification is inevita-
ble, along with requirements and procedures 
of acceptance agreed upon in advance.

Nevertheless, machine vision is a mature 
technology. Quite a few applications may 
nowadays be rated as standard assignments, 
where standard systems are available to cov-
er the required performance. Several compa-
nies have this field in view as their business 
model, backed up by a team of experienced 
application engineers who need just a few 
hours to find out whether their standard 
systems are suited or not. For well-defined 
tasks, it may be a good idea to check out one 
of these solution providers. Although this line 
of action may not lead to the same level of 
performance as in a system carefully tailored 
to the specific assignment, it may well be 
quite sufficient, thus providing a quick and 
appropriate solution. Even if an assignment 
calls for special components, thanks to the 
high level of standardization already reached 
in the machine vision industry, a broad range 
of optics, cameras and even software mod-
ules is available which can smoothly be com-
bined to build individual solutions. For such 
an approach, however, a certain amount of 
engineering competence and expert knowl-
edge is inevitable.
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chain according to the principle of highlight-
ing relevant and eliminating irrelevant fea-
tures will lead to a proper and well-balanced 
system design meeting the requirements of 
the task.

The image processing chain begins with the 
handling stage, transporting the parts to the 
inspection unit and ends up with the clas-
sification result fed back to the process. It 
may roughly be divided into the front end, 
comprising all the steps needed to produce 
an image in the main memory of the CPU, 
and the back end, that is the software or al-
gorithmic part of the image processing task. 
In the following chapters, the functional 
blocks of the front end and the back end are 
briefly described. To guide your imagination, 
it might be helpful to have a simple inspec-
tion problem for discrete parts in mind, like 
counting the balls in a ball bearing or check-
ing the number of pills in a pharmaceutical 
blister pack. The front end is schematically 
depicted in fig. 1, the back end in fig. 5. For 
other machine vision assignments like robot 
guidance, e.g., the processing chain may be 
somewhat modified, but the fundamental 
principles remain the same.

Front End: Handling

The inspection unit will usually be fixed 
in space. Parts to be inspected have to be 
brought to the inspection unit and placed 
within the field of view of the camera sys-
tem. Alternatively, a camera head may be 
brought to a well-defined position relative 
to the component, and sometimes both 
component and camera undergo synchro-
nized movement. Thus, the first element in 
the front end of an industrial machine vi-
sion system will be a handling device. Parts 
may be delivered by a human operator, by a 
conveyor belt, they may fly by under the in-
fluence of gravity or be precisely placed by a 
robot. A trigger unit is helpful, signalling the 
incoming part as an interrupt to the system 
in order to activate a strobe flash and to initi-
ate the image capture. Parts may be at rest 
when the image is taken, or they may move 
along at significant speed on a conveyor belt 
or similar. Whenever it is possible to place 
every part precisely at the same position 
and with defined orientation in the field of 
view, the subsequent steps in the image pro-
cessing chain will be much simpler and the 
algorithmic image processing will be more 

Machine Vision is a well-proven technology, 
but some tasks are still demanding and chal-
lenging. Sometimes, it is difficult to find out 
whether the border between a standard as-
signment, where an off-the-shelf-system will 
do the job, and a challenging task, neces-
sitating an individual solution, has already 
been crossed. Deployment will be faster with 
a standard system and scaling will be easier, 
but eventually, performance may be more 
important. Machine vision is not simple, 
and some tasks are even not well suited for 
machine vision. Whenever an assignment is 
repetitive and can be described as a struc-
tured decision based on causality (“if this 
than that”), it may lend itself to automation, 
and whenever visual inspection, gauging, 
identification and decoding or guidance is 
involved, machine vision may be an appro-
priate solution. Needless to say, economic 
considerations come into play. High-volume 
production lines usually are better suited for 
machine vision than highly individualized 
handiwork.

Anyway, a certain understanding of the basic 
principles behind a machine vision solution 
along with some familiarity with the lines of 
thought which have developed through the 
decades in this field, will be helpful to assess 
whether a certain task may be tackled by 
machine vision or not. These articles try to 
provide such a background.

The fundamental principle  
and the image processing chain

Some people say that the secret of life is to 
reduce your troubles to a minimum. Whether 
you will take such a cynical perspective or 
not - for machine vision in industrial quality 
control, this certainly is true. When check-
ing a part in the production line, you will 
capture at least one camera frame with let’s 
say 1000 x 1000 pixels, each with a grey 
value within an eight bit range, ending up 
with about 1 MByte of data. You are not at 
all interested in all these values. Rather, you 
would like to know whether the part is OK 
or not. Thus, the art of machine vision might 
be described as the task of effectively break-
ing down 1 MByte of data to a single bit of 
significant information. The recipe to achieve 
this is to optimize every step in the process-
ing pipeline in order to enhance those fea-
tures in the image, which are relevant for 
your specific task, and to eliminate or damp 
those features which are not relevant. Taking 
this as a guideline, you will end up with an 
image where the relevant features can be 
extracted and classified with simple and ro-
bust methods without the interference from 
irrelevant structures.

Fortunately, machine vision in industrial ap-
plications can in general well be described 
as a linear procedure stepping through well-
defined functional blocks, where one step 
is linked to the next like the elements of a 
chain. This structural model, the image pro-
cessing chain, provides an abstract guideline 
to define the general outline of an image 
processing application. Optimizing each 
functional block of the image processing 

Fig. 1 Front end of the image processing chain.

2  |  EMVA 01/2016 Machine Vision Fundamentals Outline and Principles



stable compared to a situation where parts 
are stochastically placed and oriented. In the 
latter case, additional effort may be neces-
sary to cope with position and orientation 
corrections. For moving parts, the same ve-
locity (speed and direction) for all the parts in 
the line is desirable, and a minimum distance 
between adjacent parts should be specified 
such that always only a single part will be 
in the field of view of the camera system. 
When the machine vision unit is mounted 
on a robot arm or a translation stage, travel-
ling along the part to be inspected, the same 
general ideas apply.

Needless to say, the ideal handling system 
does not exist. Usually, certain properties 
have to be compromised upon to get an ap-
propriate engineering solution in a real-world 
application. Whenever a close approximation 
to the ideal situation is feasible, however, you 
will get rid of a lot of problems which oth-
erwise would consume quite a few hours of 
engineering effort or processing time in the 
subsequent steps of the image processing 
chain.

Front End: Lighting

The next step will be to illuminate the scene. 
Lighting is one of the most powerful meth-
ods to enhance the relevant features in an 
image and to eliminate irrelevant structures. 
The main purpose of proper lighting is to pro-
vide contrast, since most image processing 
algorithms rely upon grey level differences. 
A simple example would be edge detection. 
In an 8-bit-grey-level image with grey levels 
between 0 (for black) and 255 (for white), a 
tiny difference of just 5 grey levels in an edge 
region usually will invoke a considerable risk 
for failure in edge detection, whereas a dif-
ference of 50 or more grey levels will allow 
for stable and robust performance, even with 

considerable signal noise and some inhomo-
geneity of the illumination across the field 
of view. Contrast may simply be defined as 
the grey-level difference between the bright-
est and the darkest parts in an image. As an 
example, imagine a data-matrix-code with 
black dots on a bright background. The il-
lumination should be tuned such that the 
bright pixels are not yet saturated and the 
black pixels at the same time are as dark as 
possible. Under these conditions, it will be 
quite simple to differentiate between black 
and white areas in the image by just checking 
the grey level of every pixel against a global 
threshold value, valid for the whole image.

Contrast based on the remission-properties 
of the target may be called radiometric con-
trast. However, this is only one possibility out 
of several other, sometimes quite elaborate 
methods. Scratches for example, will show 
up as bright spots when the surface is illu-
minated under grazing incidence with the 
camera picking up light along the normal of 
the surface. This usually is called a dark-field 
configuration. Thus, the geometry of illu-
mination is of importance. Fig. 2 and fig. 3 
show some examples. Polarized light may 
enhance or eliminate reflections, and spec-
trally well-defined illumination will enhance 
or reduce contrast between areas with differ-
ent colours. Projecting patterns onto the part 
to be inspected will provide texture, which 
is necessary for some 3D-methods, and the 
projection of stripes with defined spatial pe-
riod and intensity distribution allows for very 
precise and accurate measurements of the 
topography of a surface. Finally, the time 
structure of the illumination is crucial in some 
situations. For objects with linear velocity of a 
few meters per second, which is not unusual 
in a production line, a strobe light with well-
defined rectangular intensity shape in time 
will be necessary to control the blur at the 
edges of objects in the image. For a velocity 

of 1 m/s, an edge perpendicular to the direc-
tion of motion will be blurred by 1 mm for a 
lighting pulse of 1 ms. This may be quite a lot 
for some image processing algorithms. When 
reading a bar code for example, the module 
width may well be in the order of magnitude 
of this blur. Usually it is a good idea to reduce 
motion-blur to less than the pixel width.

Lighting may therefore be looked upon as a 
means of pre-processing the image. Proper 
lighting design for an industrial machine 
vision task will have dramatic effects on 
the performance of the application. Every-
thing you can master by proper lighting will 
have an immediate effect upon every pixel 
in the image in parallel. This happens on 
the fly while the image is captured. There 
is no better way to pre-process your image 
data. Thus, it is a good strategy to use well-
defined, controlled lighting in an industrial 
application and to shield the device against 
ambient light from lamps on the ceiling or 
from the sky. Fortunately, this is indeed pos-
sible in most situations on the factory floor, in 
contrast to outdoor-applications such as agri-
culture, or toll systems or in open pit mining.

Fig. 3 A coin under directional lighting from an 
LED-ring. Edges are highlighted.

Fig. 2 The same object under different lighting conditions. From the left: Undefined ambient light; 
bright field lighting; dark field lighting; diffuse light. Contrast between gravure and plain metal can  
be enhanced or eliminated.
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Front End: Optics

The next step will be to provide a suitable 
image of the illuminated scene on the sur-
face of the detector in the camera. This is 
the domain of optical elements, usually 
special lenses optimized for machine vision 
purposes. Lenses seem to be a commodity in 
machine vision, but they are not. Rather, they 
are marvellous elements of technical optics. 
The choice of a proper lens may be as crucial 
for system performance as proper lighting is.

Basically, the lens provides a defined field of 
view, meaning that a specific, well defined 
part of the scene is “seen” by the sensor in 
the camera. In addition, the lens defines the 
magnification, and its f-number defines the 
depth of field, that is the volume of the scene 
which will be transformed to a sharp image 

on the sensor. A standard lens will provoke 
perspective distortion in the image. A square 
in a plane, viewed at under an angle of 30° 
for example, will not appear as a square in 
the image anymore because a standard lens 
is based upon central projection with the 
projection centre somewhere on the optical 
axis within the lens. Fig. 4 shows an example. 
Even if a plane is viewed at along its normal, 
the central projection must be taken into ac-
count. While a square in this configuration 
will be imaged to a square (more or less, due 
to optical distortions), the scale in the image 
will vary from the centre to the edges. This 
may be a problem or not, depending upon 
the application. With special lenses you may 
get rid of the central perspective, telecentric 
lenses in this case, where the magnification is 
independent of the working distance. How-
ever, you have to trade in something for this 
advantage. Telecentric lenses are just one 
example for some very sophisticated imag-

ing optics for special purposes in machine 
vision. Fortunately, there are several quite 
experienced companies in the market which 
have specialized in these areas.

In general, it is necessary to get some insight 
into technical optics to understand the possi-
bilities of optical elements for machine vision 
and to find out about the obstacles. The con-
cept of MTF (modulation transfer function) of 
the lens for example, is quite abstract at first 
sight, but provides very important data con-
cerning the resolution of an optical system. 
The layout of a machine vision application al-
ways should account for the proper match of 
the pixel-resolution of the detector array to 
the optical resolution of the lens. Mismatch 
may lead to undersampling, which in turn 
can provoke pseudo-structures in the image 
signal by aliasing. These structures are arte-
facts; they do not exist in the optical image 
formed on the surface of the detector array. 
They appear in the signal, when the optical 
image is sampled by the discrete pixel-struc-
ture of the detector-array, and it is impossible 
to get rid of these artefacts once they are 
embedded in the image signal.

Front End: Camera

The camera sensor is the interface between 
optics and electronics. The optical image 
formed by the lens on the surface of the sen-
sor consists of photons entering the bulk of 
the semiconductor material which are con-
verted to electrons by the internal photoelec-
tric effect. Charges accumulated on each pixel 
of the sensor over a small time slice are stored 
in a capacitor and eventually read out, thereby 
converted to a voltage, amplified, then sam-
pled by an ADC and stored as integers in a 
memory. The optical intensity pattern of the 
image is thus converted first to a charge pat-
tern sampled by the pixel-area and then to a 
digital pattern in the memory of the camera, 
reflecting the pixel structure of the sensor. The 
result is a huge, but finite number of integers 
representing the image instead of the con-
tinuous intensity distribution provided by the 
lens. In this discrete and digital form only, the 
image information is suited for processing on 
a digital computing device.

Modern machine vision cameras cover a 
broad range, from competitively priced 
general-purpose models to highly sophis-
ticated systems with breath-taking pixel 

resolution, frame rate, sensitivity and signal-
to-noise-ratio. Usually the customer has no 
idea whatsoever about what is really done 
to the raw signal in the camera before it is 
output to the camera interface. Dead pixels 
are masked and patched based on values 
from their neighbouring pixels, dark sig-
nals are subtracted, photo-response-non-
uniformity (PRNU) is accounted for, to name 
just a few. Machine vision cameras roughly 
come in two classes: equipped either with 
a traditional CCD-sensor or with a CMOS-
sensor. Nowadays, there is rarely the need 
to come back to CCDs for machine vision 
applications. Modern CMOS-sensors have 
performance parameters matching or even 
exceeding those of CCDs. This is quite a re-
cent development and has been achieved by 
systematic efforts along two lines, one line 
resulting in so-called sCMOS-chips (s for “sci-
entific”). The other approach employed is a 
combination of CCD and CMOS technology, 
backed by some ingenious developments in 
solid-state-engineering, resulting in CMOS-
Sensors with outstanding performance, 
leading SONY to discontinue its production 
of CCDs, and switching to entirely CMOS 
technology. Such clear statements on per-
formance, by the way, are only possible due 
to the enormous effort which went into the 
development of the EMVAs 1288 standard, 
which provides the ability to unambiguously 
characterize camera performance param-
eters within a linear signal model which is 
now used by major camera manufacturers 
as input for their datasheets.

Since there is a large variety of camera mod-
els for several purposes in the market, the 
proper choice for a specific application is not 
an easy task. Like with other components, 
the decision should not only be based upon 
technical considerations, but also take non-
technical issues into account, such as support 
by the vendor or availability over the intend-
ed lifetime of the application. Compliance 
with various standards becomes more and 
more important, and to push forward and 
coordinate the activities of those organisa-
tions which are active in this field makes a 
significant contribution to machine vision.

Fig. 4 Perspective distortion with a standard lens.  
Scale varies significantly through the field of view.
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Front End: Interface

The digital image data, acquired in the cam-
era and stored in memory, is now ready for 
further processing. So-called smart cameras 
have powerful processors on board, and for 
some applications, the image processing task 
can completely be accomplished within the 
camera. These solutions are very effective, 
and the camera will only need an interface 
picking up interrupt signals from the pro-
cess to trigger the image acquisition, usu-
ally including the strobe pulse, and to signal 
the result of the image processing back to 
the PLC of the production line. Sometimes, 
some pre-processing only will be done on 
board to reduce the data load when the im-
age processing algorithms are handled by a 
host computer. Dedicated hardware boards 
between camera and host may be used to 
speed up certain calculations, such as filter 
operations or colour-space transformations. 
These boards usually also perform other 
tasks, such as picking up and shaping a trig-
ger signal, adding a delay and firing a strobe. 
In an abstract sense, they may be dubbed as 
“frame grabbers”, and indeed are marketed 
under this term by some vendors. Anyway, 
data flow has to be maintained such that 
processing can keep pace with the speed 
of the production line constantly delivering 
new parts and waiting for the OK or not 
to trigger a sorter. Fortunately, there exist 
several digital interfaces for machine vision 
cameras tailored to the various needs of the 
community. Some of the modern CMOS-
cameras can provide megapixel-images at a 
rate of several hundred frames per second, 
producing net data rates of several hun-
dred MBytes/s, with a few even providing 
GBytes/s. This enormous amount of data 
has to be transported in real-time from the 
camera to the host memory, and not only 
in streaming video applications, where the 
loss of some frames from time to time will 
be tolerated, but often in applications where 
every single frame in the data stream must 
be acquired reliably in a 24/7 environment. 
Interfaces from the consumer market will 
sometimes not comply with these strict re-
quirements, at least not in every mode of 
operation. Specifications of bandwidth for 
interfaces should thus be scrutinized careful-
ly, taking into account the overhead needed 
to handle the raw data and the real-time 
capability of the interface. Fortunately, the 
machine vision community has quite some 
experts who dedicate some of their precious 

time to the painstaking work on internation-
al standards for the machine vision industry. 
Thanks to these people and the international 
machine vision industry organizations who 
have established the framework for such 
activities, we now have a thorough under-
standing of the importance of these issues, 
and information on the state of the art is 
easily available and freely distributed on a 
regular basis. Have a look at their excellent 
documentation, and you will get a sound 
basis for your decision concerning a proper 
digital interface for your application. Finally, 
needless to say, there may be fast or slow 
memory modules in your host computer. 
Sometimes, memory bandwidth is the re-
stricting factor when it comes to processing 
time, even if you have a high-performance 
interface in your system.

With this step in the image processing chain, 
the image is stored in memory, waiting for 
further processing. We are now leaving the 
front end and enter the back end of the 
processing chain. From now on, the whole 
problem seems to be a topic within the 
field of discreet mathematics and software 
engineering.  However, reality rather than 
the cosy world of abstract algorithms, soon 
takes over again, since everything has to be 
implemented and run on hardware, coupled 
back to the machine on the factory floor. If 
you look back at the front end, it is immedi-
ately clear that a huge amount of the data 
reduction which is the basic assignment of 
machine vision already has been dealt with 
by lighting, optics, detector and electronics 
in the camera. And once you have realized 
that machine vision always means to come 
up with reliable quantitative data about fea-

tures in an image, it becomes clear that every 
bit of information lost at the front end never 
ever can be retrieved by software down-
stream, whatever clever algorithm you may 
apply. Once lost in the measurement process, 
the information is lost for ever. Machine vi-
sion should be regarded as a measurement 
technique rather than a means to mimic the 
perception capabilities of the human visual 
system. Thus, the proper design of the front 
end is of utmost importance for successful 
machine vision applications in industry.

Back End: Pre-Processing

Usually, the first step in image evaluation is 
some sort of pre-processing. Filter operations 
to reduce signal noise, geometrical transfor-
mations to compensate for perspective dis-
tortion, correction of optical distortions from 
the lens, shading-correction to reduce the 
influence of inhomogeneous lighting or scal-
ing the intensity to a common mean value 
are some of the techniques used at this stage 
of the image processing chain. Some of these 
steps may be avoided by careful design of the 
front end, but others may be necessary due 
to mechanical constraints at the production 
line. This step is highly application-specific 
and cannot be generalized. Pre-processing 
often is performed in the camera or on dedi-
cated hardware boards.

A common method in this stage is to choose 
one or more areas of interest or regions of 
interest (ROI) in the image. Further evalua-
tion may be restricted to these ROI, ignoring 
all the other content of the image. Algo-
rithms can be more stable on pre-defined 

Fig. 5 Back end of the image processing chain.
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areas, and when complicated algorithms 
are inevitable, processing time will be much 
shorter when these methods have to be ap-
plied to some small parts of the image only. 
Needless to say, some previous knowledge 
about where the relevant areas of the im-
age are is necessary. In industrial production 
lines, however, the setting usually is well 
defined. Sometimes deviations are compen-
sated by detecting edges, lines or fiducials 
as references to shift the ROI or by linear 
and rotational transformation of the image 
back to the standard situation. ROI usually, 
but not necessarily are rectangles with edges 
parallel to the edges of the image. Some 
CMOS-cameras allow for the definition of 
ROI directly in the camera.

In some applications, the grey-level image is 
transformed to an edge image, where edges 
and their vicinity appear bright on a black 
background. Several machine vision algo-
rithms use edges only and ignore regions 
with more or less constant grey levels. Filter 
operations which enhance edges are well 
understood and have been studied in great 
detail in image processing. Fig. 6 shows an 
example. They are standard tools in image 
processing libraries. Basically, they compute 
the gradient, that is the derivative of the 

grey-level function along the x- and y-axis 
of the image, which is a simple and straight-
forward procedure. Edge filters, however, 
have to deal with every single pixel and in 
addition, read out and process grey-values 
within a mask around every pixel, such as 
a 5x5-square, which consumes a lot of pre-
cious processing time. Since processing time 
is generally scarce in machine vision, filter-
ing is one of the image processing steps well 
suited for pre-processing on FPGA-boards.

Back End: Segmentation

Segmentation is a crucial step in the image 
processing chain, where different areas of 
the image are separated from each other, 
usually the foreground from the background. 
Criteria for differentiating between a pixel 
belonging to the foreground rather than to 
the background vary quite a lot depending 
upon the specific application. A simple, but 
powerful method for segmentation utilizes 
grey-level contrast. For every pixel in the 
image file, the grey-level is compared to a 
fixed threshold value and classified as back-
ground, when above the threshold, that is 
when it is a bright pixel, and as foreground 
or object when equal to or below the thresh-
old, that is when it is a dark pixel (or vice 
versa, when looking for bright objects on a 
dark background). The threshold is usually 
fixed beforehand as an empirical value, but 
may also be dynamically calculated for every 
frame on the fly based on the grey-level dis-
tribution of the actual image. With a carefully 
designed front end, the objects of interest 
will show up with good contrast against the 
background, and the simple thresholding 
described above will yield very good results 
in segmentation. In these cases, the grey-
levels in the histogram fall into two distinct, 
well separated groups or clusters with small 
bandwidth, one around small grey-levels 
and a second around high grey-levels. Fig. 7 
shows an example. Thresholding in images 
with such bimodal histograms allow for 
robust, stable segmentation with a single 
threshold value valid for the whole image, 
thereby enormously simplifying the image 
evaluation algorithm. The result is a binary 
image where every pixel has been converted 

to a black or a white pixel, black belonging 
to and encoding the foreground and white 
for the background or vice versa.

Segmentation can also be based on colour, 
texture or shape, to list just a few possibili-
ties, rather than on intensity. Whenever the 
procedures on the front end were success-
ful in enhancing relevant features and in 
eliminating or reducing irrelevant structures 
based on intensity, binarisation with a global 
threshold is the prime method of choice for 
segmentation. A huge number of machine 
vision assignments in industry are solved by 
means of this simple method. Segmentation, 
however, should not be underestimated. It 
is a critical step with severe consequences. 
Once a pixel is classified as background, it will 
usually be ignored in further steps along the 
image processing chain. If a group of pixels 
is significant for a defect, but has been put 
aside as background during segmentation, 
this defect gets lost in image evaluation and 
will not be detected. If a group of pixels, on 
the other hand, is classified as a significant 
object although it in fact is irrelevant, this 
additional pseudo-object may spoil the clas-
sification at the end of the image processing 
chain and end up as a false defect, resulting 
in a reject for the part under inspection al-
though everything is fine.

Fig. 6 Result of edge-filtering. Original image 
(upper left), pre-processing by  erosion (upper 
right), and two different methods of edge ext-
raction, morphological gradient (lower left) and 
Sobel edge detector (lower right).

Fig. 7a Grey-level image of coins with very  
good contrast.

Fig. 7b Grey-level histogram for the image 
in fig. 7a. Grey-level values are plotted on 
the  x-axis, number of pixels with respective 
 grey-level are plotted on the y-axes. Grey-levels  
are bimodal, they fall into two distinct clusters 
for dark pixels (coins) and light pixels (back-
ground lighting).
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Back End: Labelling

The next step along the image processing 
chain is the analysis of the pixels in the fore-
ground to separate different objects from 
each other. Pixels which are connected to 
each other are assumed to belong to the 
same object. These agglomerates of pixels 
are called blobs or connected components. 
The process of allocating pixels to their com-
mon blobs is called labelling. This comes 
from the habit of coding all the pixels be-
longing to a certain blob with a distinct grey-
value, which acts as a label for theses pixels. 
The result is a new image, the label-image, 
where the background is encoded with the 
grey-level zero, the pixels belonging to the 
first blob found with the grey-level 1, the 
second with grey-level 2 and so on. Every 
object of interest in the image will thus be 
“coloured” with its specific grey-level, which 
is a nice feature for visualization as well as 
for further processing. Based on the label-
image, it is easy to blank out all other objects 
but a single, specific blob, resulting in an im-
age with a single object only. This is quite 
convenient for some algorithms, since all the 
complications which may arise due to several 
different objects in the image can be ignored. 
Labelling on binary images is a standard pro-
cedure of image evaluation and several algo-
rithms for labelling are published and well 
documented, as well as implemented in com-
mercial and open source image processing 
libraries. Labelling nowadays is a commodity. 
Fig. 8 shows an example.

Back End: Blob Analysis

Labelling isolates objects of interest in the 
image. The next step in image evaluation 
deals with quantitative measurements of 
certain properties of these objects such as 
area, diameter, shape, position or orienta-
tion. This step is called blob analysis and the 
properties are called features. There is a huge 
number of blob features which may be used 
for characterization of the objects. The centre 
of gravity for example, used as a measure of 
the position of the object in the image, is well 
suited for pick-and-place-applications or for 
metrology, when the distance between two 
circular bore-holes in a part has to be precise-
ly measured. There exist features characteriz-
ing the degree of similarity of the object with 
a circle, features giving the angle between 
the main axis of elongation of an object with 

reference to the x-axis of the image file, or 
features quantifying the convexity of an ob-
ject by giving the ratio between the area of 
the object and the area of the smallest object 
that can be calculated from said object by 
complementing all concavities, the so-called 
convex hull. The label-image may also be 
used as a mask for the original grey-level 
image, thus giving access to statistical fea-
tures of the object area in the original image 
such as mean grey-value, standard deviation 
of grey-values, entropy and so on. Choosing 
the appropriate features suitable to support 
a stable solution for a specific machine vi-
sion task is sometimes straight-forward, but 
sometimes is not an easy task. As always in 
engineering, experience is the key.

Blob analysis is restricted to binary images. 
Although this method is a powerful tool 
and will be successful in a huge number of 
machine vision applications, there are other 
approaches to evaluate images. Some meth-
ods are entirely based upon grey-level dis-
tributions, without the need for labelling or 
even segmentation. Searching for patterns 
by grey-level correlation is one example for 
this kind of procedures, as well as methods 
for finding the pose of an object based on 
edges in the image. Another class of algo-
rithms leaves the classical realm of the im-
age plane entirely behind and transforms 
it into a different space by looking at the 
Fourier-transform image, that represents spa-
tial frequencies rather than at relationships 
between pixels. Even in segmented binary 
images more elaborate methods are quite 
common, such as looking for straight lines, 
circles or other geometrical forms by so-
called Hough-transformation. The straight-
forward blob analysis, however, is quite well 
suited for many machine vision assignments 
in industry, and whenever this approach 
works, it makes sound sense to follow this 
line of action.

Back End: Classification  
and Feedback

Near the end of the image processing chain, 
we now have a set of numbers in hand quan-
tifying several features for all the objects in 
the image. These features are the basis for 
a decision leading to an OK or not for the 
part being checked. In a mechanical com-
ponent machined from metal there may be 
some bore holes, and their diameter and 
relative position on a circle of defined radius 
for instance, may be checked against the 
specification. The appropriate features which 
have to be obtained by image processing are 
obvious in this case. Other assignments are 
more complicated, such as checking num-
bers. Each character hopefully has been iso-
lated by labelling, but what are the features 
which will lead to a stable differentiation 
between the numbers 8 and 9 for example. 
In this instance the number of holes will do 
the job. But what happens, when the char-
acters are printed by an inkjet, looking more 
like a swarm of points than like a carefully 
stencilled number? In this case, at some point 
along the image processing chain a filter will 
be applied which fills in the gaps between 
the points. This might make sense after seg-
mentation, when the foreground has been 
separated from the background and the im-
age already is a binary image. Nevertheless, 
optical character recognition is not straight-
forward. Just imagine to differentiate be-
tween 6 and 9 or between 3 and E. It can 
be done, of course, but choosing the proper 
features calls for some thinking.

In classification for industrial machine vision, 
it is a good idea to base the decision upon 
rules: if this, then that. Such a decision tree is 
a transparent, well defined procedure which 
is open for tolerance analysis. This is a very 
important feature for industrial applications, 
since the robustness of a method is a high-

Fig. 8 An example for labelling. Original grey-level image (left), binary image after thresholding  
(centre), label image with blobs depicted by their contour and label with number (right).
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ranking criterion for quality control in the 
production line. When conditions change 
slightly, such as the level of ambient light, 
the precision of the conveyor, the transport 
velocity, the colour of the parts or their sur-
face roughness and so on, these fluctuations 
should not affect the result for inspection of 
a bore hole. With rule-based classification, 
specifications and tolerances can unambig-
uously be checked. Nevertheless, statistics 
comes in as well, since every measurement 
has uncertainties which have to be carefully 
evaluated. It is a law of nature that there is 
always a non-vanishing probability for false 
acceptance or false rejection in a classifica-
tion. The rate may be small, but in a high-
volume production line, every possibility will 
come up once in a while, you just have to 
wait.

Recently, a different approach has gained a 
lot of interest, namely the concept of deep 
learning in the context of neural networks. 
These procedures are by no means new, but 
the development in computing power push-
es neural networks to new frontiers com-
pared to the performance in earlier decades. 
Basically, a neural network is a huge grid of 
equal interconnected computing compo-
nents organized in several parallel planes. 
This grid narrows down the grey levels of the 
pixels in an image, the input plane, to a bit-
pattern in the output plane by weighing and 
combining the reaction of the “neurons” to 
their counterparts in the level below. The 
input-image thus can be broken down to 
a small number of bits in the output-plane, 
even to a single bit. This is exactly the para-
digm of machine vision, at least concern-
ing the pixel-crunching part. But how about 
the optimization of every component to en-
hance the relevant and to suppress the irrel-
evant structures in the image? Compared to 
traditional image processing, deep learning 
is entirely different: the weighing and con-
necting of the “neurons” is not based on a 
model and on “if this then that”, but rather 
on a training process, where a huge number 
of already classified images is presented to 
the system as input and the connections are 
determined by an iterative procedure based 
on the known output bit-pattern for every 
image. This is described as “learning”, but 
the better phrase is “training”. Training is 
a cumbersome process, since for some ap-
plications several thousand, even millions 
of images have to be used to cover all use 
cases – which all have to be properly classi-

fied beforehand, sometimes by hand. It is 
obvious that the structure of the network 
depends heavily upon the number and qual-
ity of the images in the learning set. In ad-
dition, the calculations done in the training 
process take a lot of time: minutes, hours, 
sometimes days. The most critical point, 
however, is the statistical nature of the classi-
fication model. Training of a neural network 
is based on correlation rather than on cau-
sality. Consequently, there is no such thing 
as a model describing the system and allow-
ing the classification to be structured along 
well-defined reasoning. This does not mean 
that the classification is stochastic; the same 
image presented to the network, will always 
lead to the same resulting bit pattern at the 
output plane. The logic behind, however, is 
deterministic, but it will be quite difficult to 
put any meaning into the paths taken by the 
network when an image is classified by the 
system. In other words, the decision process 
cannot be understood any more in a tradi-
tional sense, rendering classical debugging 
impossible, and system analysis with regard 
to failure modes or tolerances is only pos-
sible on an empirical basis. For this reason, 
some vision experts feel somewhat uneasy 
when classification is based on deep learn-
ing for systems where very low failure rates 
have to be guaranteed. Nevertheless, neural 
networks and other related approaches are 
already widely and successfully used even in 
traditional image processing such as opti-
cal character recognition. Their true poten-
tial, however, is in applications where the 
use cases are so diverse and manifold that 
classical methods will not work, and at the 
same time, failure of the classification has 
no severe consequences. Whenever there is 
a second chance or an alternative path with-
out any harm done, such a strategy might 
be appropriate.

Finally, the result of the classification is sig-
nalled back, and the PLC of the production 
line takes over. The inspection stage now is 
clear for the next part, waiting for a trig-
ger pulse signalling the arrival and to initi-
ate the acquisition of the next image. Some 
documentation may be necessary, such as 
storing images for reject parts, or the visu-
alization of process trends for some features 
to aid the supervising personnel may also 
be implemented within the machine vision 
system, but basically the unit is a slave within 
the production line waiting to go ahead and 
signalling back accomplishment.

The key question, however, is about risk. 
Risk is the probability times damage associ-
ated with the event. If risk can be handled, 
everything is fine. But handling risk is not an 
engineering task, it is a management or en-
trepreneurial task. In an ideal world, it is up 
to the engineer to quantify the probability, 
and it is up to the manager to decide. Real 
life, however, is more complex.

Summary and Outlook

The image processing chain is a simplified 
procedure model, but it may be a helpful 
tool to envision the general structure of an 
industrial machine vision solution. For a spe-
cific application, additional steps may come 
in, others may be unnecessary. Not every 
machine vision assignment can simply be 
solved by thresholding, labelling and blob 
analysis, but for a huge number of problems 
this is the method of choice. Anyway, the 
basic strategy holds: optimizing every step in 
the image processing chain, from lighting to 
classification, such that the relevant features 
are enhanced and the irrelevant structures 
are eliminated as best as possible.

Further articles in this series will focus on 
some special topics rather than deal with all 
the aspects of the image processing chain in 
detail. Articles are not the proper format for 
the latter task. Machine vision is engineering, 
and getting in touch with this field means 
to gain a general overview and some insight 
first, which is what these articles are aiming 
for, but hands-on experience and in-depth 
education on a thorough theoretical back-
ground are inevitable to really get going.

The author

Prof. Dr. Christoph Heckenkamp
Darmstadt University of Applied Sciences
Department of Optical Engineering  
and Machine Vision (OBV) 
Darmstadt, Germany 
heckenkamp@h-da.de
www.fbmn.h-da.de

Supported by

8  |  EMVA 01/2016 Machine Vision Fundamentals Outline and Principles

http://www.inspect-online.com

