

RECONSTRUCTION VIA DETECTION HIGHLY ACCURATE RECONSTRUCTION FROM UNORGANIZED 3D SCANS

Tolga Birdal

BRIEF RÉSUMÉ

Education

- TUM, Technical University of Munich
- Sabanci University, Istanbul

Experience

- MERL: Mitsubishi Electric Research Labs, Cambridge
- Intel research, Pittsburgh
- CMU: Carnegie Mellon University, Pittsburgh
- Isra Vision, Istanbul
- OpenCV, Google Summer of Code 2014
- Siemens AG, Munich, 2014 Present

Entrepneurship

- Befunky: <u>www.befunky.com</u>
- Gravi Information Technologies

Technische Universität München

University

MOTIVATION

• Aid the accurate manufacturing of carved industrial parts.

MOTIVATION

Digitization of industrial 3D objects:

- High precision
- Full automation
- Real-time performance
- User feedback
- Marker-less operation
- Segmentation

Challenges:

- Size (large volumes)
- Accuracy
- Specular materials
- Unordered sequence
- Clutter & occlusions
- Small number of scans

Images of Gas Turbine Casings

INTRODUCTION

Given 3D Point Clouds

- In Clutter
- Occlusions
- Unordered
- Large Scale

Accurately reconstruct 3D mesh.

DATA MODALITY

- Multiple, unordered scans of gas turbine casings
- Between 10M 100M 3D data points
- Accuracy around 1-2mm in 10m working distance
- Objects of interest are contained in $\sim 5^3 m^3$ 3D volumes
- No depth or RGB images, only unstructured point clouds
- CAD models do not exactly match reality and are very different

PRIOR ART

- Point Cloud Based
 - Relies on scan to scan registration
 - Cannot deal well with clutter or occlusions
 - Suffers from high complexity
 - Too slow for online operation and real-time feedback

- Volumetric Methods (KinFU-like)
 - Require sequential input data
 - Require depth images (due to SDF)
 - Resolution is limited to the voxel size
 - Suffers from drifts and tracking error

We alleviate these problems via the introduction of a proxy 3D CAD model.

OUR FORMULATION

Given CAD model **M**, find $\{T_i^M\}$ that best align the scenes $\{S_i\}$:

$$\mathbf{S}_G = \bigcup_{i=1}^N T_i^M(S_i | \mathbf{M})$$

$$T_i^M(x|M) = \mathbf{R}_i^M x + \mathbf{t}_i^M$$

 T_i^M are w.r.t. model coordinate frame.

OUR PIPELINE

PREPARATION OF CAD MODEL

PROBLEMS WITH CAD MODELS IN INDUSTRY

Non-uniform triangle structure

Uneven distribution of vertices

APPROACH : RE-MESHING

- Process of converting meshes to a more suitable discrete representation
- Method of choice : Restricted Voronoi Diagrams (RVD) (Yan et. al.)
- With Centroidal RVD, we can achieve an isotropic re-meshing.

APPROACH : RE-MESHING

3D DETECTION OF CAD MODELS

OUTLINE OF THE ALGORITHM Hash table A = $\{(\mathbf{m}_1,\mathbf{m}_2),$ Compute $(m_3, m_4),$ (Key to the (m_5, m_6) Hashtable Load / hash table) Trained & Generate 3D Model Precompute Model Training α_{model} Runtime **PPF** Feature α_n Extraction Hashtable Load / \mathbf{m}_r' Lookup Model Description **Pose Clustering** Generate 3D & \mathbf{m}_r [Model Vote for Pose Accumulator Space **ICP** Refinement

&

Final Pose

B. Drost, M. Ulrich, N. Navab, and S. Ilic, "Model globally, match locally: Efficient and robust 3d object recognition." in *CVPR*. IEEE, 2010, pp. 998–1005. [Online]. Available: http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#DrostUNI10

INDEXING

- F is quantized and used as a key to Hashtable.
- Buckets store the reference points, and a rotation angle around the normal.
- We need to sample points to reduce complexity!

FEATURE QUANTIZATION

• The reference point \mathbf{s}_r is assumed to lie on the model and paired with every other point \mathbf{s}_i in the scene

- The global model description is used to get all similar point pairs from the model
- Each point pair from the model votes for one sample of the local parameters

HYPOTHESIS VERIFICATION & RANKING

Many candidates remain to be evaluated

- Simple Idea:
 - Retain all meaningful hypothesis
 - Register each one to the CAD model
 - Select the best
- Ranking:
 - A model based score function

How do we make ICP so fast that we could verify all candidates in real-time?

Birdal, T., Ilic, S.: Point pair features based object detection and pose estimation revisited. In: 3D Vision (3DV), 2015 2nd International Conference on, IEEE (2015) 527–535

ANSWER: DISTANCE TRANSFORMS

Make use of the available model prior

- Pre-compute and store in voxel grid:
 - The distance to the closest model point
 - The index of the closest model point
- Approximate but very fast distance computations

EFFICIENT ICP USING DISTANCE TRANSFORMS

- Only a sparse set of scene points are used in verification.
- Naturally, we would like to minimize point-to-plane error:

With distance transforms:

$$q_i = \mathbf{M}(I(T \circ p_i))$$

~0.8ms per hypothesis

Birdal, T., Ilic, S.: Point pair features based object detection and pose estimation revisited. In: 3D Vision (3DV), 2015 2nd International Conference on, IEEE (2015) 527–535

ILLUSTRATION ON REAL KINECT DATA

Model & Data

Best Hypothesis And Make

OBJECT DETECTIONS ON LASER SCANS

SEGMENTATION

• Retrieve only points with close proximity to vertices of the CAD model

Segmentation of Planes : Embedded into the voting stage

$$vote_{s_r,s_i} = \begin{cases} w_{plane} & |\angle(\mathbf{s_r}, \mathbf{d})| \le \frac{\pi}{2} + \epsilon \land |\angle(\mathbf{s_i}, \mathbf{d})| \le \frac{\pi}{2} + \epsilon \land |\angle(\mathbf{s_r}, \mathbf{s_i})| \le 2\epsilon \\ 0, & \text{otherwise} \end{cases}$$

FINAL STITCHING

So far:

Scans are transferred to the CAD model space

- They are segmented
- ICP registration is performed
- What remains:
 - Everything is related to CAD model, which might be far from reality
 - No pose relationships established
 - Global consistency is not enforced

COMPUTING THE POSE GRAPH

- Standard pipelines require exhaustive methods : e.g. Minimum spanning trees
- CAD Model eases this process:

MULTIVIEW REGISTRATION

• Having the pose graph, and ignoring the CAD model, we globally optimize camera poses to bring scans into best alignment.

MULTIVIEW REGISTRATION

MULTIVIEW REGISTRATION

RESULTS

TOY OBJECTS

- 3 small objects: Decorative toys
- 3D printed from CAD models
- Printing accuracy <10µ</p>
- 15cm 30cm in diam.
- Captured with industrial structured light scanner (<0.25mm)</p>
- 3D points are reconstructed from depth scenes (calibration errors are there)

RESULTS TOY OBJECTS

RESULTS ON TOY OBJECTS

Accuracy assessment in comparison to standard volume based methods (in mm)

	Leopard		Teddy		Bunny	
	μ	σ	μ	σ	μ	σ
KinFU	1.785	1.299	0.998	0.807	0.664	0.654
Kehl et. al.	1.018	1.378	1.028	0.892	2.149	2.869
Ours	0.481	0.519	0.369	0.371	0.415	0.501

Might not be a fair comparison as we have perfect CAD models

INDUSTRIAL OBJECTS

VENTIL

- 2³ m³ of volume
- 8 Surphaser laser scan
- 10M points / scan
- Taking a scan : ~20min.
- Availability of photogrammetry
- Availability of Surphaser reconstruction

TURBINE

- 5³ m³ of volume
- 10 laser scans with Surphaser
- 10M 100m points / scan
- Taking a scan : ~30min.
- Availability of photogrammetry

VENTIL

Surphaser Scanner

Ventil Part

Our Reconstructions

WRAP-UP

a) CAD Model

b) CAD-Prep

c) Input Scans

d) Detections

e) w/o Opt

f) Optimized

g) Surphaser vs Ours

VENTIL

VENTIL: COMPARISON TO PHOTOGRAMMETRY

Our Reconstruction vs Photogrammetry

COMPARISON TO SURPHASER

CAD MODEL VS RECONSTRUCTION

 CAD models do not correspond to the real manufactured objects.

TURBINE

TURBINE

Figure shows a comparison to photogrammetry (mm)

CAD MODEL VS RECONSTRUCTION

CAD models do not correspond to the real manufactured objects.

APPROXIMATE TIMINGS

- Averaged over available objects
- Windows OS, Intel i5 CPU with 16GB of RAM
- Parameters are tuned for best performance vs speed trade-off.

	CAD-prep	Object Detection	Verification	Global MV ICP
Toy Objects	40.41	0.34	0.024	42.60
Industrial Parts	64.37	3.10	0.27	112.94

FUTURE WORK

- Symmetric objects are not seamlessly handled
- A more accurate segmentation is pluggable: Graph Cuts, CRF with model prior ?
- A vast literature on Multiview registration exists : A survey ?
- Final meshing remains to be an open problem Marching Cubes, Poisson, Smooth Signed Distances all have their own flaws
- Extensive evaluation on other objects with photogrammetric studies

THANK YOU FOR YOUR ATTENTION

You could reach me at:

TOLGA BIRDAL

tolga.bridal@tum.de

www.tbirdal.me