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RECONSTRUCTION VIA DETECTION
HIGHLY ACCURATE RECONSTRUCTION | aaaaaa o
Tum~ FROM UNORGANIZED 3D SCANS SIEMENS



BRIEF RESUME SIEMENS
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http://www.befunky.com/

MOTIVATION

= Aid the accurate manufacturing of carved industrial parts.

CAD Model

Oversized Milling
Pre-Form Process

Measurement




MOTIVATION

Digitization of industrial 3D objects:
* High precision

* Full automation

* Real-time performance

* User feedback

* Marker-less operation

* Segmentation

Challenges:
= Size (large volumes)
* Accuracy

* Specular materials

Images of Gas Turbine Casings

* Unordered sequence
= Clutter & occlusions
= Small number of scans



INTRODUCTION

Accurately reconstruct 3D mesh.

Given 3D Point Clouds
= |n Clutter
" QOcclusions
= Unordered
" Large Scale



DATA MODALITY

= Multiple, unordered scans of gas
turbine casings

= Between 10M — TOOM 3D data points
= Accuracy around 1-2mm in 10m
working distance

" Objects of interest are contained in
~53m3 3D volumes

" No depth or RGB images, only
unstructured point clouds

= CAD models do not exactly match
reality and are very different




PRIOR ART

= Point Cloud Based * Volumetric Methods (KinFU-like)
= Relies on scan to scan registration = Require sequential input data
= Cannot deal well with clutter or occlusions = Require depth images (due to SDF)
= Suffers from high complexity = Resolution is limited to the voxel size
* Too slow for online operation and = Suffers from drifts and tracking error

real-time feedback

We alleviate these problems via the introduction of a proxy 3D CAD model.




OUR FORMULATION oy

Given CAD model M, find {7} that best align the scenes {S;}:

N
Sa = J 7 (siM)
1=1

T (x| M) =Rz + ¢

TM are w.r.t. model coordinate frame.
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OUR PIPELINE

€ 1put CAD Model

9 Preparation of CAD Model

Hypothesis Verification &
Pose Graph Computation

Runtime

0 Input Point Clouds

&

Cycle

e Individual Detections <

Multiview
Global Optimization

Feedback

Rejection

Extraction & Meshing




PREPARATION OF CAD MODEL



PROBLEMS WITH CAD MODELS IN INDUSTRY

Non-uniform triangle
structure
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APPROACH : RE-MESHING

" Process of converting meshes to a more suitable discrete representation

Method of choice : Restricted Voronoi Diagrams (RVD) (Yan et. al.)

With Centroidal RVD, we can achieve an isotropic re-meshing.
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APPROACH : RE-MESHING
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3D DETECTION OF CAD MODELS



OUTLINE OF THE ALGORITHM

Hash table
{Tmlsmz)-
(" Compute ) LR ~mm). )
Load / Hashtable | twdiumo | “™" Trainod
Generate 3D & — Model
Model Precompute
\__ Omodel ___/ \_ ) Training
Runtime ) %
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E . D @ aq Qnp
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&
Final Pose

B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match locally: Efficient and
robust 3d object recognition.” in CVPR. 1EEE, 2010, pp. 998-1005. [Online]. Available:
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#DrostUNI10




POINT PAIR FEATURES

F(mla m2) — (||d||27 Z(nla d)a é(n% d)a Z(nla 1’12))



INDEXING

Quantization

mlva) — (HdH27 Z(nlad)a Z(n% d)v Z(nlan2))

hash table)

= F is quantized and used as a key to Hashtable.
= Buckets store the reference points, and a rotation angle around the normal.

" We need to sample points to reduce complexity!

A =
{(mlva)a
~ O | T
F (m37m4)7
(Key to the (mj, mg)}



FEATURE QUANTIZATION

L(%d) /( nl,ng))

Angle quantization

Points within similar radius

d: diameter > are mapped to same bins.

‘—> Relative quantization coefficient




SEARCHING
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Model Description Accumulator Space

" The reference point s_is assumed to lie on the model and paired with every other
point s. in the scene

* The global model description is used to get all similar point pairs from the model

* Each point pair from the model votes for one sample of the local parameters



HYPOTHESIS VERIFICATION & RANKING

* Many candidates remain to be evaluated

= Simple ldea:
= Retain all meaningful hypothesis

= Register each one to the CAD model
= Select the best

* Ranking:
= A model based score function

How do we make ICP so fast that we could verify all candidates in real-time 2

Birdal, T., llic, S.: Point pair features based object detection and pose estimation revisited. In:
3D Vision (3DV), 2015 2nd International Conference on, IEEE (2015) 527-535




ANSWER: DISTANCE TRANSFORMS

Make use of the available model prior

Ve e V(M) D(zx) = min|m; — x|| I(x) = argmin||m; — x|

1 ?
l (—v Model point ‘—» Index of closest model point

Voxel Grid

Pre-compute and store in voxel grid:
The distance to the closest model point

The index of the closest model point

Approximate but very fast distance computations



EFFICIENT ICP USING DISTANCE TRANSFORMS

Only a sparse set of scene points are used in verification.

Naturally, we would like to minimize point-to-plane error:

N
E(S,M) =Y [[(R-si+t—m;) nm,||

1=1 l l ‘_. Model Normal

Scene Model

With distance transforms:

¢ = M(I(T o p;)) ~0.8ms per hypothesis




Birdal, T., llic, S.: Point pair features based object detection and pose estimation revisited. In:
3D Vision (3DV), 2015 2nd International Conference on, IEEE (2015) 527-535

ILLUSTRATION ON REAL KINECT DATA

Model & Data Detections Best Hypothesis




OBJECT DETECTIONS ON LASER SCANS




SEGMENTATION

= Retrieve only points with close proximity to vertices of the CAD model

= Segmentation of Planes : Embedded into the voting stage

Wplane |£(Se,d)| < 5 +eN|[L(s1,d)| < T + €A |L(sp,81)| < 2¢

votes, s, = .
0, otherwise



FINAL STITCHING

So far:
Scans are transferred to the CAD model space

They are segmented

ICP registration is performed

What remains:
Everything is related to CAD model, which might be far from reality
No pose relationships established

Global consistency is not enforced



COMPUTING THE POSE GRAPH

= Standard pipelines require exhaustive methods : e.g. Minimum spanning trees

= CAD Model eases this process:
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MULTIVIEW REGISTRATION

* Having the pose graph, and ignoring the CAD model, we globally optimize camera
poses to bring scans into best alignment.
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MULTIVIEW REGISTRATION




MULTIVIEW REGISTRATION




RESULTS



TOY OBJECTS

= 3 small objects: Decorative toys

= 3D printed from CAD models

* Printing accuracy <10pu
= 15cm — 30cm in diam.
= Captured with industrial structured light scanner (<0.25mm)

= 3D points are reconstructed from depth scenes (calibration errors are there)



TOY OBJECTS
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RESULTS ON TOY OBJECTS

= Accuracy assessment in comparison to standard volume based methods (in mm)

Leopard Teddy Bunny

7 o [ o L o
KinFU 1.785 1.299 0.998 0.807 0.664 0.654
Kehl et. al. 1.018 1.378 1.028 0.892 2.149 2.869

Ours 0.481 0.519 0.369 0.371 0.415 0.501

= Might not be a fair comparison as we have perfect CAD models



INDUSTRIAL OBJECTS

VENTIL TURBINE
23 m?3 of volume 53 m?3 of volume
8 Surphaser laser scan 10 laser scans with Surphaser
10M points / scan 10M — 100m points / scan
Taking a scan : ~20min. Taking a scan : ~30min.
Availability of photogrammetry Availability of photogrammetry

Availability of Surphaser reconstruction



VENTIL

Surphaser Scanner Ventil Part

QOur Reconstructions



WRAP-UP

a) CAD Model b) CAD-Prep ¢) Input Scans d) Detections e) w/o Opt f) Optimized g) Surphaser vs Ours



VENTIL




VENTIL: COMPARISON TO PHOTOGRAMMETRY

Our Reconstruction vs
Photogrammetry

Frequency
=N W o g1
oS O O O O O O

045 1,28 2,11 2,94 3,77 4,60 543 6,26 7,09 7,92
Abs Error (mm)




COMPARISON TO SURPHASER

SURPHASER OURS

0.0015 0.003 0.0045 0,006 0.0075
C2C absolute distances] <0.01]



Count

CAD MODEL VS RECONSTRUCTION

= CAD models do not correspond
to the real manufactured objects.

C2M absolute distances[<0.03] (6956043 values) [256 classes]
200000 1

160000 1

120000 -
80000

40000

0.0045 0.009

0.0135 0.018 0.0225

0.027
C2M absolute distances[ <0.03]
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TURBINE

Figure shows a comparison to photogrammetry (mm)

C2C absolute distances[ <0.015] = 0.002563
b8 -0.727441

bl -1.611271
@l -0.713144
1.529930

C2C absolute distances[ <0.015] = 0.000378
bl -0.158526
@ -0.716048
0.519807

bel 1.164909
fl -0.343352
0.029598

b8 -0.092952
-0.954901
Py -1.301872




Count

CAD MODEL VS RECONSTRUCTION

= CAD models do not correspond
to the real manufactured objects.

C2M absolute distances[<0.51 (12107644 values) [256 classes]
480000
400000
320000
240000
160000

80000

0

0 0.03 0.06 0.09 0.12 0.15 0.18
C2M absolute distances[<0.5]



APPROXIMATE TIMINGS

= Averaged over available objects
* Windows OS, Intel i5 CPU with 16GB of RAM

" Parameters are tuned for best performance vs speed trade-off.

CAD-prep Object Detection Verification Global MV ICP

Toy Objects 40.41 0.34 0.024 42.60
Industrial Parts 64.37 3.10 0.27 112.94




FUTURE WORK

Symmetric objects are not seamlessly handled

A more accurate segmentation is pluggable: Graph Cuts, CRF with model
prior ¢

A vast literature on Multiview registration exists : A survey ¢

Final meshing remains to be an open problem — Marching Cubes, Poisson,
Smooth Signed Distances all have their own flaws

Extensive evaluation on other objects with photogrammetric studies
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