

Version 1.1 GenTL Standard

GenICam GenTL Standard
Version 1.1

Document Version 1.1

 10 November 2009 Page 1 of 92

Version 1.1 GenTL Standard

Contents
1 Introduction .. 9

1.1 Purpose ... 9

1.2 Committee .. 10

1.3 Definitions and Acronyms ... 11

1.3.1 Definitions.. 11

1.3.2 Acronyms ... 11

1.4 References .. 11

2 Architecture.. 12

2.1 Overview .. 12

2.1.1 GenICam GenTL.. 12

2.1.2 GenICam GenApi... 12

2.2 GenTL Modules ... 13

2.2.1 System Module... 14

2.2.2 Interface Module .. 14

2.2.3 Device Module ... 14

2.2.4 Data Stream Module... 14

2.2.5 Buffer Module .. 15

2.3 GenTL Module Common Parts .. 15

2.3.1 C Interface .. 15

2.3.2 Configuration ... 16

2.3.3 Signaling (Events) .. 16

3 Module Enumeration and Instantiation .. 18

3.1 Setup... 18

3.2 System .. 18

3.3 Interface.. 20

3.4 Device... 21

3.5 Data Stream.. 22

3.6 Buffer ... 23

3.7 Example.. 23

3.7.1 Basic Device Access .. 24

3.7.2 InitLib... 24

 10 November 2009 Page 2 of 92

Version 1.1 GenTL Standard

3.7.3 OpenTL .. 24

3.7.4 OpenFirstInterface.. 24

3.7.5 OpenFirstDevice... 25

3.7.6 OpenFirstDataStream... 25

3.7.7 CloseDataStream.. 25

3.7.8 CloseDevice ... 25

3.7.9 CloseInterface... 25

3.7.10 CloseTL.. 26

3.7.11 CloseLib ... 26

4 Configuration and Signaling .. 27

4.1 Configuration ... 27

4.1.1 Modules.. 27

4.1.2 XML Description ... 28

4.1.3 Example.. 30

4.2 Signaling... 30

4.2.1 Event Objects ... 31

4.2.2 Event Data Queue... 32

4.2.3 Event Handling... 33

4.2.4 Example.. 34

5 Acquisition Engine... 35

5.1 Overview .. 35

5.1.1 Announced Buffer Pool.. 35

5.1.2 Input Buffer Pool.. 35

5.1.3 Output Buffer Queue.. 35

5.2 Acquisition Chain... 36

5.2.1 Allocate Memory.. 37

5.2.2 Announce Buffers .. 38

5.2.3 Queue Buffers .. 38

5.2.4 Register “New Buffer” Event... 38

5.2.5 Start Acquisition... 38

5.2.6 Acquire Image Data ... 38

5.2.7 Stop Acquisition... 39

 10 November 2009 Page 3 of 92

Version 1.1 GenTL Standard

5.2.8 Flush Buffer Pools and Queues.. 39

5.2.9 Revoke Buffers... 39

5.2.10 Free Memory .. 39

5.3 Acquisition Modes ... 40

5.3.1 Default Mode.. 40

6 Software Interface .. 42

6.1 Overview .. 42

6.1.1 Installation.. 42

6.1.2 Function Naming Convention .. 42

6.1.3 Memory and Object Management.. 43

6.1.4 Thread and Multiprocess Safety... 43

6.1.5 Error Handling.. 44

6.2 Used Data Types .. 45

6.3 Function Declarations .. 46

6.3.1 Library Functions ... 46

6.3.2 System Functions ... 48

6.3.3 Interface Functions... 51

6.3.4 Device Functions.. 55

6.3.5 Data Stream Functions ... 57

6.3.6 Port Functions .. 63

6.3.7 Signaling Functions.. 68

6.4 Enumerations.. 71

6.4.1 Library and System Enumerations ... 71

6.4.2 Interface Enumerations .. 73

6.4.3 Device Enumerations ... 74

6.4.4 Data Stream Enumerations... 76

6.4.5 Port Enumerations .. 79

6.4.6 Signaling Enumerations ... 81

6.5 Structures.. 83

6.5.1 Signaling Structures ... 83

6.5.2 Port Structures .. 84

7 Standard Feature Naming Convention for GenTL... 85

 10 November 2009 Page 4 of 92

Version 1.1 GenTL Standard

7.1 Common... 85

7.1.1 System Module... 85

7.1.2 Interface Module .. 86

7.1.3 Device Module ... 88

7.1.4 Data Stream Module... 88

7.1.5 Buffer Module .. 89

7.2 GigE Vision.. 90

7.2.1 System Module... 90

7.2.2 Interface Module .. 90

7.2.3 Device Module ... 91

 10 November 2009 Page 5 of 92

Version 1.1 GenTL Standard

Figures
Figure 2-1: GenTL Consumer and GenTL Producer ... 12

Figure 2-2: GenTL Module hierarchy.. 13

Figure 2-3: GenICam GenTL interface (C and GenApi Feature-interface)............................. 15

Figure 3-1: Enumeration hierarchy of a GenTL Producer ... 18

Figure 5-1: Acquisition chain seen from a buffer’s perspective (default acquisition mode) ... 37

Figure 5-2: Default acquisition from the GenTL Consumer’s perspective.............................. 41

 10 November 2009 Page 6 of 92

Version 1.1 GenTL Standard

Tables
Table 4-1: Local URL definition for XML description files in the module register map........ 28

Table 4-2: Event types per module .. 31

Table 6-1: Function naming convention .. 42

Table 6-2: C interface error codes.. 44

Table 7-1: System module information features .. 85

Table 7-2: Interface enumeration features ... 86

Table 7-3: Interface information features... 86

Table 7-4: Device enumeration features .. 87

Table 7-5: Device information features ... 88

Table 7-6: Stream enumeration features .. 88

Table 7-7: Data Stream information features... 88

Table 7-8: Buffer information features .. 89

Table 7-9: GigE Vision system information features... 90

Table 7-10: GigE Vision interface enumeration features... 90

Table 7-11: GigE Vision interface information features.. 90

Table 7-12: GigE Vision device enumeration features .. 91

Table 7-13: GigE Vision device information features ... 91

 10 November 2009 Page 7 of 92

Version 1.1 GenTL Standard

 10 November 2009 Page 8 of 92

Changes
Version Date Author Description
0.1 May 1st 2007 Rupert Stelz, STEMMER IMAGING 1st Version
0.2 July 18th 2007 Rupert Stelz, STEMMER IMAGING Added Enums

Added Std Features
Added AcqMode Drawings

0.3 November 2007 Sub Committee:
Rupert Stelz, STEMMER IMAGING
Sascha Dorenbeck, STEMMER IMAGING
Jan Becvar, Leutron Vision
Carsten Bienek, IDS
Francois Gobeil, Pleora Technologies
Christoph Zierl, MVTec

Applied changes as
discussed on the last
meeting in Ottawa

0.4 Januar 2008 Sub Committee Removed EventGetDataEx
and CustomEvent
functionality
Added comments from
IDS, Matrix Vision,
Matrox, Pleora, Leutron
Vision, STEMMER
IMAGING

1.0 August 2008 Standard Document Release
1.1 September 2009 GenTL Committee Changes for V. 1.1:

- Support of multiple
XML-Files (Manifest)
- Added Stacked register
access

- Changes for using the
new Little/Bigendian
scheme

- Changes to the
installation procedure /
location

- Added new error codes

- Definition of the symbol
exports under 64Bit OS

- Clarifications to the text

Version 1.1 GenTL Standard

1 Introduction

1.1 Purpose
The goal of the GenICam GenTL standard is to provide a generic way to enumerate devices
known to a system, communicate with one or more devices and, if possible, stream data from
the device to the host independent from the underlying transport technology. This allows a
third party software to use different technologies to control cameras and to acquire data in a
transport layer agnostic way.

The core of the GenICam GenTL standard is the definition of a generic Transport Layer
Interface (TLI). This software interface between the transport technology and a third party
software is defined by a C interface together with a defined behavior and a set of standardized
feature names and their meaning. To access these features the GenICam GenApi module is
used.

The GenICam GenApi module defines an XML description file format to describe how to
access and control device features. The Standard Feature Naming Convention defines the
behavior of these features.

The GenTL software interface does not cover any device-specific functionality of the remote
device except the one to establish communication. The GenTL provides a port to allow access
to the remote device features via the GenApi module.

This makes the GenTL the generic software interface to communicate with devices and
stream data from them. The combination of GenApi and GenTL provides a complete software
architecture to access devices, for example cameras.

 10 November 2009 Page 9 of 92

Version 1.1 GenTL Standard

1.2 Committee

The following members of the GenICam Standard Group are members of the GenTL
subcommittee that is responsible for developing the GenICam GenTL Standard:

• IDS

• Leutron Vision

• MATRIX VISION

• Matrox

• MVTec Software

• Pleora Technologies

• STEMMER IMAGING

 10 November 2009 Page 10 of 92

Version 1.1 GenTL Standard

 10 November 2009 Page 11 of 92

1.3 Definitions and Acronyms

1.3.1 Definitions

Term Description
GenApi GenICam module defining the GenApi XML Schema
GenTL Generic Transport Layer Interface
GenTL Consumer A library or application using an implementation of a

Transport Layer Interface
GenTL Producer Transport Layer Interface implementation
Signaling Mechanism to notify the calling GenTL Consumer of an

asynchronous event.
Configuration Configuration of a module through the GenTL Port

functions, a GenApi compliant XML description and the
GenTL Standard Feature Naming Convention.

1.3.2 Acronyms

Term Description
GenICam Generic Interface to Cameras
GenTL Generic Transport Layer
GigE Gigabit Ethernet
PC Personal Computer
TLI Generic Transport Layer Interface
CTI Common Transport Interface
CL Camera Link
IIDC 1394 Trade Association Instrumentation and Industrial

Control Working Group, Digital Camera Sub Working
Group.

USB Universal Serial Bus
UVC USB Video Class

1.4 References
EMVA GenICam Standard www.genicam.org

ISO C Standard (ISO/IEC 9899:1990(E))

AIA GigE Vision Standard http://www.machinevisiononline.org/

http://www.genicam.org/
http://www.machinevisiononline.org/

Version 1.1 GenTL Standard

2 Architecture
This section provides a high level view of the different components of the GenICam GenTL
standard.

2.1 Overview
The goal of GenTL is to provide an agnostic transport layer interface to acquire images or
other data and to communicate with a device. It is not its purpose to configure the device
except for the transport related features – even if it must be indirectly used in order to
communicate configuration information to and from the device.

2.1.1 GenICam GenTL
The standard text’s primary concern is the definition of the GenTL Interface and its behavior.
However, it is also important to understand the role of the GenTL in the whole GenICam
system.

Figure 2-1: GenTL Consumer and GenTL Producer

When used alone, GenTL is used to identify two different entities: the GenTL Producer and
the GenTL Consumer.

A GenTL Producer is a software driver implementing the GenTL Interface to enable an
application or a software library to access and configure hardware in a generic way and to
stream image data from a device.

A GenTL Consumer is any software which can use one or multiple GenTL Producers via the
defined GenTL Interface. This can be for example an application or a software library.

2.1.2 GenICam GenApi
It is strongly recommended not to use the GenApi module inside the GenTL Producer
implementations. If it is used internally no access to it may be given through the C interface.
Some reasons are:

 10 November 2009 Page 12 of 92

Version 1.1 GenTL Standard

• Retrieval of the correct GenICam XML file: for the device configuration XML there is
no unique way a GenTL Producer can create a node map that will be always identical to
the one used by the application. Even if in most cases the XML is retrieved from the
device, it cannot be assumed that it will always be the case.

• GenICam XML description implementation: there is no standardized implementation.
GenApi is only a reference implementation, not a mandatory standard. User
implementations in the same or in a different language may be used to interpret GenApi
XML files. Even if the same implementation is used, the GenTL Producer and Consumer
may not even use the same version of the implementation.

• Caching: when using another instance of an XML description inside the GenTL Producer,
unwanted cache behavior may occur because both instances will be maintaining their own
local, disconnected caches.

2.2 GenTL Modules
The GenTL standard defines a layered structure for libraries implementing the GenTL
Interface. Each layer is defined in a module. The modules are presented in a tree structure
with the System module as its root.

Figure 2-2: GenTL Module hierarchy

 10 November 2009 Page 13 of 92

Version 1.1 GenTL Standard

2.2.1 System Module
For every GenTL Consumer the System module as the root of the hierarchy is the entry point
to a GenTL Producer software driver. It represents the whole system (not global, just the
whole system of the GenTL Producer driver) on the host side from the GenTL libraries point
of view.

The main task of the System module is to enumerate and instantiate available interfaces
covered by the implementation.

The System module also provides signaling capability and configuration of the module’s
internal functionality to the GenTL Consumer.

It is possible to have a single GenTL Producer incorporating multiple transport layer
technologies and to express them as different Interface modules. In this case the transport
layer technology of the System module must be ‘Mixed’ and the child Interface modules
expose their actual transport layer technology. In this case the first interface could then be a
Camera Link frame grabber board and the second interface an IIDC 1394 controller.

2.2.2 Interface Module
An Interface module represents one physical interface in the system. For Ethernet based
transport layer technologies this would be a Network Interface Card (NIC); for a Camera Link
based implementation this would be one frame grabber board. The enumeration and
instantiation of available devices on this interface is the main role of this module. The
Interface module also presents Signaling and module configuration capabilities to the GenTL
Consumer.

One system may contain zero, one or multiple interfaces. An interface is always only of one
transport layer technology. It is not allowed to have e.g. a GEV camera and a Camera Link
camera on one interface. There is no logical limitation on the number of interfaces addressed
by the system. This is limited solely by the hardware used.

2.2.3 Device Module
The Device module represents the GenTL Producers’ proxy for one physical remote device.
The responsibility of the Device module is to enable the communication with the remote
device and to enumerate and instantiate Data Stream modules. The Device module also
presents Signaling and module configuration capabilities to the GenTL Consumer.

One Interface module can contain zero, one or multiple Device module instances. A device is
always of one transport layer technology. There is no logical limitation on the number of
devices attached to an interface. This is limited solely by the hardware used.

2.2.4 Data Stream Module
A single (image) data stream from a remote device is represented by the Data Stream module.
The purpose of this module is to provide the acquisition engine and to maintain the internal
buffer pool. Beside that the Data Stream module also presents Signaling and module
configuration capabilities to the GenTL Consumer.

 10 November 2009 Page 14 of 92

Version 1.1 GenTL Standard

One device can contain zero, one or multiple data streams. There is no logical limitation on
the number of streams a device can have. This is limited solely by the hardware used and the
implementation.

2.2.5 Buffer Module
The Buffer module encapsulates a single memory buffer. Its purpose is to act as the target for
acquisition. The memory of a buffer can be user allocated or GenTL Producer allocated. The
latter could be pre-allocated system memory. The Buffer module also presents Signaling and
module configuration capabilities to the GenTL Consumer.

To enable streaming of data at least one buffer has to be announced to the Data Stream
module instance and placed into the input buffer pool.

2.3 GenTL Module Common Parts
Access and compatibility between GenTL Consumers and GenTL Producers is ensured by the
C interface and the description of the behavior of the modules, the Signaling, the
Configuration and the acquisition engine.

Figure 2-3: GenICam GenTL interface (C and GenApi Feature-interface)

The GenTL Producer driver consists of three logical parts: the C interface, the Configuration
interface and the Event interface (signaling). The interfaces are detailed as follows:

2.3.1 C Interface
The C interface provides the entry point of the GenTL Producer. It enumerates and creates all
module instances. It includes the acquisition handled by the Data Stream module. The

 10 November 2009 Page 15 of 92

Version 1.1 GenTL Standard

Signaling and Configuration interfaces of the module are also accessed by GenTL Consumer
through the C interface. Thus it is possible to stream an image by just using the C interface
independent of the underlying technology. This also means that the default state of a GenTL
Provider should ensure the ability to open a device and receive data from it.

A C interface was chosen because of multiple reasons:

• Support of multiple client languages: a C interface library can be imported by many
programming languages. Basic types can be marshaled easily between the languages and
modules (different heaps, implementation details).

• Dynamic loading of libraries: it is easily possible to dynamically load and call C style
functions. This enables the implementation of a GenTL Consumer dynamically loading
one or more GenTL Producers at runtime.

• Upgradeability: a C library can be designed in a way that it is binary compatible to
earlier versions. Thus the GenTL Consumer does not need to be recompiled if a version
change occurs.

Although a C interface was chosen because of the reasons mentioned above, the actual GenTL
Producer implementation can be done in an object-oriented language. Except for the global
functions, all interface functions work on handles which can be mapped to objects.

Any programming language which can export a library with a C interface can be used to
implement a GenTL Producer.

To guarantee interchangeability of GenTL Producers and GenTL Consumers no language
specific feature except the ones compatible to ANSI C may be used in the interface of the
GenTL Producer.

2.3.2 Configuration
Each module provides GenTL Port functionality so that the GenICam GenApi (or any other
similar, non-reference implementations) can be used to access a module’s configuration. The
basic operations on a GenTL Producer implementation can be done with the C interface
without using specific module configuration. More complex or implementation-specific
access can be done via the flexible GenApi Feature interface using the GenTL Port
functionality and the provided GenApi XML description.

Each module brings this XML description along with which the module’s port can be used to
read and/or modify settings in the module. To do that each module has its own virtual register
map which can be accessed by the Port functions. Thus the generic way of accessing the
configuration of a remote device has been extended to the transport layer modules themselves.

2.3.3 Signaling (Events)
Each module provides the possibility to notify the GenTL Consumer of certain events. As an
example, a “NewBuffer” event can be raised/signaled if new image data has arrived from a
remote device. The number of events supported for a specific module depends on the module
and its implementation.

The C interface enables the GenTL Consumer to register events on a module. The event
object used is platform and implementation dependent, but is encapsulated in the C interface.

 10 November 2009 Page 16 of 92

Version 1.1 GenTL Standard

 10 November 2009 Page 17 of 92

Version 1.1 GenTL Standard

3 Module Enumeration and Instantiation
The behavior described below is seen from a single process’ point of view. A GenTL
Producer implementation must make sure that every process that is allowed to access the
resources has this separated view on the hardware without the need to know that other
processes are involved.

For a detailed description of the C functions and data types see chapter 6 Software Interface
page 1ff. For how to configure a certain module or get notified on events see chapter 4
Configuration and Signaling page 27.

Figure 3-1: Enumeration hierarchy of a GenTL Producer

3.1 Setup
Before the System module can be opened and any operation can be performed on the GenTL
Producer driver the GCInitLib function must be called. This must be done once per
process. After the System module has been closed (when e.g. the GenTL Consumer is closed)
the GCCloseLib function must be called to properly free all resources. If the library is used
after GCCloseLib was called the GCInitLib must be called again. Multiple calls to
GCInitLib from within the same process with the according calls to GCCloseLib return
an error. The same is true for multiple calls to GCCloseLib without accompanying call to
GCInitLib.

3.2 System
The System module is always the entry point for the calling GenTL Consumer to the GenTL
Producer. With the functions present here all available hardware interfaces in the form of an
Interface module can be enumerated.

 10 November 2009 Page 18 of 92

Version 1.1 GenTL Standard

By calling the TLOpen function the TL_HANDLE to work on the System module’s functions
can be retrieved. The TL_HANDLE obtained from a successful call to the TLOpen function
will be needed for all successive calls to other functions belonging to the System module.

Before doing that, the GCGetInfo function might be called to retrieve the basic information
about the GenTL Producer implementation without opening the system module.

Each GenTL Producer driver exposes only a single System instance in an operating system
process space. If a System module is requested more than once from within the same process
space an error GC_ERR_RESOURCE_IN_USE is returned. If a GenTL Producer allows
access from multiple processes it has to take care of the inter-process-communication and
must handle the book-keeping of instantiated system modules. If it does not allow this kind of
access it must return an appropriate error code whenever an attempt to create a second System
module instance from another operating system process is made.

The System module does no reference counting within a single process. Thus even when a
System module handle is requested twice from within a single process space, the second call
will return an error GC_ERR_RESOURCE_IN_USE. The first call to the close function from
within that process will free all resources and shut down the module.

Prior to the enumeration of the child interfaces the TLUpdateInterfaceList function
must be called. The list of interfaces held by the System module must not change its content
unless this function is called again. Any call to TLUpdateInterfaceList does not affect
instantiated interface handles. It may only change the order of the internal list accessed via
TLGetInterfaceID.

The GenTL Consumer must make sure that calls to the TLUpdateInterfaceList
function and the functions accessing the list are not made concurrent from multiple threads
and that all threads are aware of the update operation, when performed. The GenTL Producer
must make sure that any list access is done in a thread safe way.

After the list of available interfaces has been generated internally the
TLGetNumInterfaces function retrieves the number of present interfaces known to this
system. The list contains not the IF_HANDLEs itself but their unique IDs of the individual
interfaces. To retrieve such an ID the TLGetInterfaceID function must be called. This
level of indirection allows the enumeration of several interfaces without the need to open
them which can save resources and time.

If additional information is needed to be able to decide which interface is to be opened, the
TLGetInterfaceInfo function can be called. This function enables the GenTL
Consumer to query information on a single interface without opening it.

To open a specific interface the unique ID of that interface is passed to the
TLOpenInterface function. If an ID is known prior to the call this ID can be used to
directly open an interface without inquiring the list of available interfaces via
TLUpdateInterfaceList. That implies that the IDs must stay the same in-between two
sessions. This is only guaranteed when the hardware does not change in any way. The
TLUpdateInterfaceList function may be called nevertheless for the creation of the
System’s internal list of available interfaces. A GenTL Producer may call

 10 November 2009 Page 19 of 92

Version 1.1 GenTL Standard

TLUpdateInterfaceList at module instantiation if needed.
TLUpdateInterfaceList must be called by the GenTL Consumer before any call to
TLGetNumInterfaces or TLGetInterfaceID. After successful module instantiation
the TLUpdateInterfaceList function may only be called by the GenTL Consumer so
that it is aware of any change in that list. For convenience reasons the GenTL Producer
implementation may allow opening an Interface module not only using its unique ID but also
with any other defined name. If the GenTL Consumer then requests the ID of such a module,
the GenTL Producer must return it's unique ID and not the convenience-name used to request
the module’s handle initially. This allows a GenTL Consumer for example to use the IP
address of a network interface (in case of a GigE Vision GenTL Producer driver) to
instantiate the module instead of using the unique ID.

When the GenTL Producer driver is not needed anymore the TLClose function must be
called to close the System module and all other modules which are still open and relate to this
System.

After a System module has been closed it may be opened again and the handle to the module
may be different from the first instantiation.

3.3 Interface
An Interface module represents a specific hardware interface like a network interface card or
a frame grabber. The exact definition of the meaning of an interface is left to the GenTL
Producer implementation. After retrieving the IF_HANDLE from the System module all
attached devices can be enumerated.

If an interface is requested by the GenTL Consumer that has been instantiated before and has
not yet been closed, the system must return the handle of the Interface module instance
created earlier within the same process. The size and order of the interface list provided by the
System module can change during runtime only as a result of a call to the
TLUpdateInterfaceList function. Interface modules may be closed in a random order
that can differ from the order they have been instantiated in. The module does no reference
counting. If an Interface module handle is requested a second time from within one process
space the second call will return an error GC_ERR_RESOURCE_IN_USE. A single call from
within that process to the IFClose function will free all resources and shut down the module
in that process.

Every interface is identified not by an index but by a System module wide unique ID. The
content of this ID is up to the GenTL Producer and is only interpreted by it and must not be
interpreted by the GenTL Consumer.

In order to create or update the internal list of all available devices the
IFUpdateDeviceList function may be called. The internal list of devices must not
change its content unless this function is called again.

The GenTL Consumer must make sure that calls to the IFUpdateDeviceList function
and the functions accessing the list are not made concurrent from multiple threads and that all
threads are aware of an update operation. The GenTL Producer must make sure that any list
access is done in a thread safe way.

 10 November 2009 Page 20 of 92

Version 1.1 GenTL Standard

The number of entries in the internally generated device list can be obtained by calling the
IFGetNumDevices function. Like the interface list of the System module, this list does not
hold the DEV_HANDLEs of the devices but their unique IDs. To retrieve an ID from the list
call the IFGetDeviceID function. By not requiring a device to be opened to be
enumerated, it is possible to use different devices in different processes. This is of course only
the case if the GenTL Producer supports the access from different processes.

Before opening a Device module more information about it might be necessary. To retrieve
that information call the IFGetDeviceInfo function.

To open a Device module the IFOpenDevice function is used. As with the interface ID the
device ID can be used, if known prior to the call, to open a device directly by calling
IFOpenDevice. The ID must not change between two sessions. The
IFUpdateDeviceList function may be called nevertheless for the creation of the
Interface internal list of available devices. IFUpdateDeviceList must be called before
any call to IFGetNumDevices or IFGetDeviceID. In case the instantiation of a Device
module is possible without having an internal device list the IFOpenDevice may be called
without calling IFUpdateDeviceList before. This is necessary if in a system the devices
can not be enumerated e.g. a GigE Vision system with a camera connected through a WAN.
A GenTL Producer may call IFUpdateDeviceList at module instantiation if needed.
After successful module instantiation the IFUpdateDeviceList may only be called by
the GenTL Consumer so that it is aware of any change in that list. A call to
IFUpdateDeviceList does not affect any instantiated Device modules and its handles,
only the order of the internal list may be affected.

For convenience reasons the GenTL Producer implementation may allow to open a Device
module not only with its unique ID but with any other defined name. If the GenTL Consumer
then requests the ID on such a module, the GenTL Producer must return its unique ID and not
the “name” used to request the module’s handle initially. This allows a GenTL Consumer for
example to use the IP address of a remote device in case of a GigE Vision GenTL Producer
driver to instantiate the Device module instead of using the unique ID.

When an interface is not needed anymore it must be closed with the IFClose function. This
frees the resources of this Interface and all child Device modules still open.

After a Interface module has been closed it may be opened again and the handle to the module
may be different from the first instantiation.

3.4 Device
A Device module represents the GenTL Producer driver’s view on a remote device. If the
Device is able to output streaming data this module is used to enumerate the available data
streams. The number of available data streams is limited first by the remote device and second
by the GenTL Producer implementation. Dependent on the implementation it might be
possible that only one of multiple stream channels can be acquired or even only the first one.

 10 November 2009 Page 21 of 92

Version 1.1 GenTL Standard

If a GenTL Consumer requests a Device that has been instantiated from within the same
process before and has not been closed, the Interface should return an error. If the instance
was created in another process space and it explicitly wants to grant access to the Device this
access should be restricted to read only.. The module does no reference counting within one
process space. If a Device module handle is requested a second time from within one process
space, the second call will return an error GC_ERR_RESOURCE_IN_USE. The first call from
within that process to the DevClose function will free all resources and shut down the
module including all child modules in that process.

Every device is identified not by an index but by an Interface module wide unique ID. It is
recommended to have a general unique identifier for a specific device. The ID of the GenTL
Device module should be different to the remote device ID. The content of this ID is up to the
GenTL Producer and is only interpreted by it and not by any GenTL Consumer.

For convenience a GenTL Producer may allow opening a device not only by its unique ID.
The other representations may be a user defined name or a transport layer technology
dependent ID like for example an IP address for IP-based devices.

To get the number of available data streams the DevGetNumDataStreams function is
called using the DEV_HANDLE returned from the Interface module. As with the Interface and
the Device lists this list holds the unique IDs of the available streams. The number of data
streams or the data stream IDs may not change during runtime. The IDs of the data streams
should be fix between sessions.

To get access to the Port object associated with a Device the function DevGetPort must be
called.

A Data Stream module can be instantiated by using the DevOpenDataStream function. As
with the IDs of the modules discussed before a known ID can be used to open a data stream
directly. The ID must not change between different sessions. To obtain a unique ID for a Data
Stream call the DevGetDataStreamID function.

If a device is not needed anymore call the DevClose function to free the Device module’s
resources and its depending child Data Streams if they are still open.

After a Device module has been closed it may be opened again and the handle to the module
may be different from the first instantiation.

3.5 Data Stream
The Data Stream module does not enumerate its child modules. Main purpose of this module
is the acquisition which is described in detail in chapter 5 Acquisition Engine page 35ff.
Buffers are introduced by the calling GenTL Consumer and thus it is not necessary to
enumerate them.

Every stream is identified not by an index but by a Device module wide unique ID. The
content of this ID is up to the GenTL Producer and is only interpreted by it and not by any
GenTL Consumer.

 10 November 2009 Page 22 of 92

Version 1.1 GenTL Standard

When a Data Stream module is not needed anymore the DSClose function must be called to
free its resources. This automatically stops a running acquisition, flushes all buffers and
revokes them.

Access from a different process space is not recommended. The module does no reference
counting. That means that even if a Data Stream module handle is requested a second time
from within one process space the second call will return an error
GC_ERR_RESOURCE_IN_USE. The first call from within that process to the close function
will free all resources and shut down the module in that process.

After a Data Stream module has been closed it may be opened again and the handle to the
module may be different from the first instantiation.

3.6 Buffer
A buffer acts as the destination for the data from the acquisition engine.

Every buffer is identified not by an index but by a unique handle returned from the
DSAnnounceBuffer or DSAllocAndAnnounceBuffer functions.

A buffer can be allocated either by the GenTL Consumer or by the GenTL Producer. Buffers
allocated by the GenTL Consumer are made known to the Data Stream module by a call to
DSAnnounceBuffer which returns a BUFFER_HANDLE for this buffer. Buffers allocated
by the GenTL Producer are retrieved by a call to DSAllocAndAnnounceBuffer which
also returns a BUFFER_HANDLE. The two methods must not be mixed on a single Data
Stream module. A GenTL Producer must implement both methods even if one of them is of
lesser performance. The simplest implementation for DSAllocAndAnnounceBuffer
would be a malloc from the platform SDK.

If the same buffer is announced twice via a call to DSAnnounceBuffer on the same stream
an error GC_ERR_RESOURCE_IN_USE is returned.

The required size of the buffer must be retrieved either from the Data Stream module the
buffer will be announced to or from the associated remote device (see chapter 5.2.1 for further
details).

To allow the acquisition engine to stream data into a buffer it has to be placed into the Input
Buffer Pool by calling the DSQueueBuffer function with the BUFFER_HANDLE retrieved
through announce functions.

A BUFFER_HANDLE retrieved either by DSAnnounceBuffer or
DSAllocAndAnnounceBuffer can be released through a call to DSRevokeBuffer.
A buffer which is still in the Input Buffer Pool or the Output Buffer Queue of the acquisition
engine cannot be revoked and an error is returned when tried. A memory buffer must only be
announced once.

3.7 Example
This sample code shows how to instantiate the first Data Stream of the first Device connected
to the first Interface.

 10 November 2009 Page 23 of 92

Version 1.1 GenTL Standard

3.7.1 Basic Device Access

{
 InitLib();
 TL_HANDLE hTL = OpenTL();
 IF_HANDLE hIface = OpenFirstInterface(hTL);
 DEV_HANDLE hDevice = OpenFirstDevice(hIface);
 DS_HANDLE hStream = OpenFirstDataStream(hDevice);

 // At this point we have successfully created a data stream on the first

 // device connected to the first interface. Now we could start to

 // capture data...

 CloseDataStream(hStream);
 CloseDevice(hDevice);
 CloseInterface(hIface);
 CloseTL(hTL);
 CloseLib();
}

3.7.2 InitLib
Initialize GenTL Producer
{

 GCInitLib();

}

3.7.3 OpenTL
Retrieve TL Handle
{

 TLOpen(hTL);

}

3.7.4 OpenFirstInterface
Retrieve first Interface Handle
{
 TLUpdateInterfaceList (hTL);
 TLGetNumInterfaces(hTL, NumInterfaces);
 If (NumInterfaces > 0)
 {
 // First query the buffer size
 TLGetInterfaceID(hTL, 0, IfaceID, &bufferSize);

 // Open interface with index 0
 TLOpenInterface(hTL, IfaceID, hNewIface);
 }

 10 November 2009 Page 24 of 92

Version 1.1 GenTL Standard

}

3.7.5 OpenFirstDevice
Retrieve first Device Handle
{
 IFUpdateDeviceList(hIF);
 IFGetNumDevices(hTL, NumDevices);
 If (NumDevices > 0)
 {
 // First query the buffer size
 IFGetDeviceID(hIF, 0, DeviceID, &bufferSize);

 // Open interface with index 0
 IFOpenDevice(hIF, DeviceID, hNewDevice);
 }
}

3.7.6 OpenFirstDataStream
Retrieve first Data Stream

{
 // Retrieve the number of Data Stream
 DevGetNumDataStreams(hDev, NumStreams);

 if(NumStreams > 0)
 {
 // Get ID of first stream using
 DevGetDataStreamID (hdev, 0, StreamID, buffersize);
 // Instantiate Data Stream
 DevCreateDataStream (hDev, StreamID, hNewStream);
 }
}

3.7.7 CloseDataStream
Close Datastream
{
 DSClose(hStream);
}

3.7.8 CloseDevice
Close Device
{
 DevClose(hDevice);
}

3.7.9 CloseInterface
Close Interface
{
 IFClose(hIface);

 10 November 2009 Page 25 of 92

Version 1.1 GenTL Standard

}

3.7.10 CloseTL
Close System module
{
 TLClose(hTL);
}

3.7.11 CloseLib
Shutdown GenTL Producer
{
 GCCloseLib();
}

 10 November 2009 Page 26 of 92

Version 1.1 GenTL Standard

4 Configuration and Signaling
Every module from the System to the Buffer supports a GenTL Port for the configuration of
the module internal settings and the Signaling to the calling GenTL Consumer.

For a detailed description of the C function interface and data types see chapter 6 Software
Interface page 42ff. Before a module can be configured or an event can be registered the
module to be accessed must be instantiated. This is done through module enumeration as
described in chapter 3 Module Enumeration page 18ff.

4.1 Configuration
To configure a module and access transport layer technology specific settings a GenTL Port
with a GenApi compliant XML description is used. The module specific functions’ concern is
the enumeration, instantiation, configuration and basic information retrieval. Configuration is
done through a virtual register map and a GenApi XML description for that register map.

For a GenApi reference implementation’s IPort interface the TLI publishes Port functions. A
GenApi IPort expects a Read and a Write function which reads a chunk of memory from
the associated device. Regarding the GenTL Producer’s feature access each module acts as a
device for the GenApi implementation by implementing a virtual register map. When certain
registers are written or read, implementation dependent operations are performed in the
specified module. Thus the abstraction made for camera configuration is transferred also to
the GenTL Producer.

The memory layout of that virtual register map is not specified and thus it is up to the GenTL
Producer’s implementation. A certain set of mandatory features must be implemented which
are described in chapter 7, Standard Feature Naming Convention for GenTL page 85ff.

Among the Port functions of the C interface is a GCReadPort function and a
GCWritePort function which can be used to implement an IPort object for the GenApi
implementation. These functions resemble the IPort Read and Write functions in their
behavior.

4.1.1 Modules
Every GenTL module except the Buffer module must support the Port functions of the TLI –
the Buffer module can support these functions. To access the registers of a module the
GCReadPort and GCWritePort functions are called on the module’s handle, for example
on the TL_HANDLE for the System module. A GenApi XML description file and the GenApi
Module of GenICam is used to access the virtual register map in the module using GenApi
features.

The URL containing the location of the according GenICam XML description can be
retrieved through a call to the GCGetPortURL function of the C interface.

Additional information about the actual port implementation in the GenTL Producer can be
retrieved using GCGetPortInfo. The information includes for example the port endianess
or the allowed access (read/write, read only,…).

Two modules are special in the way the Port access is handled:

 10 November 2009 Page 27 of 92

Version 1.1 GenTL Standard

Device Module
In the Device module two ports are available: First the Port functions can be used with a
DEV_HANDLE giving access to the Device module’s internal features. Second the GenTL
Consumer can get the PORT_HANDLE of the remote device by calling the DevGetPort
function.

Both Ports are mandatory for a GenTL Producer implementation.

Buffer Module
The implementation of the Port functions is not mandatory for buffers. To check if an
implementation is available call the GCGetPortInfo function with e.g. the
PORT_INFO_MODULE command. If no implementation is present the function’s return value
must be GC_ERR_NOT_IMPLEMENTED.

4.1.2 XML Description
The only thing missing to be able to use the GenApi like feature access is the XML
description. To retrieve a list with the possible locations of the XML the
GCGetNumPortURLs function and the GCGetPortURLInfo function can be called.
Three possible locations are defined in a URL like notation (for a definition on the URL see
RFC 3986): Module Register Map (recommended for GenTL Producer), Local Directory or
Vendor Web Site. A GenTL Consumer is required to implement ‘Module Register Map’ and
‘Local Directory’. The download from a vendor’s website is optional.

Module Register Map (Recommended)
A URL in the form “local:[///]filename.extension;address;length[?SchemaVersion=x.x.x]”
indicates that the XML description file is located in the module’s virtual register map. The
square brackets are optional. The “x.x.x” stands for the schema version the referenced XML
complies to in the form major.minor.subminor. If the SchemaVersion is omitted the URL
references to an XML referring to SchemaVersion 1.0.0. Optionally the “///” behind “local:”
can be omitted to be compatible to the GigE Vision local format.

If the XML description is stored in the local register map the document can be read by calling
the GCReadPort function.

Entries in italics must be replaced with actual values as follows:

Table 4-1: Local URL definition for XML description files in the module register map

Entry Description
Local Indicates that the XML description file is located in

the virtual register map of the module.
Filename Information file name. It is recommended to put the

vendor, model/device and revision information in the
file name separated by an underscore. For example:
tlguru_system_rev1 for the first revision of the
System module file of the GenTL Producer company
TLGuru.

Extension Indicates the file type. Allowed types are

 10 November 2009 Page 28 of 92

Version 1.1 GenTL Standard

Entry Description
• xml for an uncompressed XML description file.
• zip for a zip compressed XML description file.

Address Start address of the file in the virtual register map. It
must be expressed in hexadecimal form without a
prefix.

length Length of the file in bytes. It must be expressed in
hexadecimal form without a prefix.

SchemaVersion Version the referenced XML complies to. The
version is specified as a major.minor.subminor.

A complete local URL would look like this:
local:tlguru_system_rev1.xml;F0F00000;3BF?SchemaVersion=1.0.0

This file has the information file name “tlguru_system_rev1.xml” and is located in the virtual
register map starting at address 0xF0F00000 (C style notation) with the length of 0x3BF
bytes.

The memory alignment is not further restricted (byte aligned) in a GenTL module. If the
platform or the transport layer technology requests a certain memory alignment it has to be
taken into account in the GenTL Producer implementation.

Local Directory
URLs in the form “file:///filepath.extension” or “file:filename.extension” indicate that a file is
present somewhere on the machine running the GenTL Consumer. This notation follows the
URL definition as in the RFC 3986 for local files. Entries in italics must be replaced with the
actual values, for example:
file:///C|program%20files/genicam/xml/genapi/tlguru/tlguru_system_rev1.xml?
SchemaVersion=1.0.0

This would apply to an uncompressed XML file on an English Microsoft Windows operating
system’s C drive.

Optionally the “///” behind the “file:” can be omitted to be compatible with the GigE Vision
notation. This notation does not specify the exact location. A graphical user interface then
would show a file dialog for example.

It is recommended to put the vendor, model or device and revision information in the file
name separated by an underscore. For example: tlguru_system_rev1 for the first revision of
the System module file of the GenTL Producer company TLGuru.

Supported extensions are:

• xml for uncompressed XML description files

• zip for zip compressed XML description files

Vendor Web Site (optional)
If a URL in the form “http://host/path/filename.extension[?SchemaVersion=1.0.0]” is present,
it indicates that the XML description document can be downloaded from the vendor’s web

 10 November 2009 Page 29 of 92

Version 1.1 GenTL Standard

site. This notation follows the URL definition as in the RFC 3986 for the http protocol.
Entries in italics must be replaced with the actual values, e.g.
http://www.tlguru.org/xml/tlguru_system_rev1.xml

This would apply to an uncompressed XML file found on the web site of the TLGuru
company in the xml sub directory.

It is recommended to put the vendor, model or device and revision information in the file
name separated by an underscore. For example: tlguru_system_rev1 for the first revision of
the System module file of the GenTL Producer company TLGuru.

Supported extensions are:

• xml for uncompressed XML description files

• zip for zip compressed XML description files

4.1.3 Example
{

 // Retrieve the URL list

 GCGetPortURL(hModule, URLBuffer, buffersize);

 // Retrieve the a single URL from the list

 // GetSingleURL(URLBuffer, URLString);

 if (ParseURLLocation(URLString) == local)

 {

 // Retrieve the address within the module register map from the URL

 Addr = ParseURLLocalAddress(URLString);

 Length = ParseURLLocalLength(URLString);

 // Retrieve an XMLBuffer to store the XML with the size Length

 …

 // Load xml from local register map into memory

 GCReadPort(hModule, Addr, XMLBuffer, Length);

 }

}

4.2 Signaling
The Signaling is used to notify the GenTL Consumer on asynchronous events. Usually all the
communication is initiated by the GenTL Consumer. With an event the GenTL Consumer can
get notified on specific GenTL Producer operations. This mechanism is an implementation of
the observer pattern where the calling GenTL Consumer is the observer and the GenTL
Producer is being observed.

 10 November 2009 Page 30 of 92

Version 1.1 GenTL Standard

The reason why an event object approach was chosen rather than callback functions is mainly
thread priority problems. A callback function to signal the arrival of a new buffer is normally
executed in the thread context of the acquisition engine. Thus all processing in this callback
function is done also with its priority. If no additional precautions are taken the acquisition
engine is blocked as long the callback function does processing.

By using an event-object-based approach the acquisition engine for example only prepares the
necessary data and then signals its availability to the GenTL Consumer through the previously
registered event objects. The GenTL Consumer can decide in which thread context and with
which priority the data processing is done. Thus processing of the event and the signal’s
generation are decoupled.

4.2.1 Event Objects
Event objects allow asynchronous signaling to the calling GenTL Consumer.

Event objects have two states: signaled or not signaled. An EventGetData function blocks
the calling thread until either a user defined timeout occurred or the event object is signaled. If
the event object is signaled prior to the call of the EventGetData functions, the function
returns immediately delivering the data associated with the event signaled.

Not every event type can be registered with every module and not every module needs to
implement every possible event type. If a module is not listed for an event it does not have to
be implemented in that module’s implementation.

The maximum size of the data delivered by an event is defined in the event description and
can be retrieved through the EventGetInfo function. The actual size is returned by the
EventGetData function.

If an event type is implemented by a module it is strongly recommended to register an event
object for that event type. The following event types are defined:

Table 4-2: Event types per module

Event Type Modules Description
Error All A GenTL Consumer can get notified on asynchronous

errors in a module. These are not errors due to
function calls in the C interface or in the GenApi
Feature access. These have their own error reporting.
This event applies for example to an error while data
is acquired in the acquisition engine of a Data Stream
module.

New Buffer Data Stream,
Buffer

New data is present in a buffer in the acquisition
engine. When registered on a Data Stream module the
calling GenTL Consumer is informed about every
new buffer in that stream. If it is registered on a
Buffer module the GenTL Consumer is notified that
this specific buffer contains new data. If the
EventFlush function is called also all buffers in the
output buffer queue are discarded. If a

 10 November 2009 Page 31 of 92

Version 1.1 GenTL Standard

Event Type Modules Description
DSFlushQueue is called all events from the event
queue are removed as well.

Feature Invalidate Device
(remote
Device)

This event signals to a calling GenTL Consumer that
the GenTL Producer driver changed a value in the
register map of the remote device and if this value is
cached in the GenApi implementation the cache must
be invalidated.
This is especially useful with remote devices where
the GenTL Producer may change some information
that is also used by the GenTL Consumer. For the
local modules this is not necessary as the
implementation knows which features must not be
cached.

Feature Change Device
(remote
Device)

This event communicates to a GenTL Consumer that a
GenApi feature must be set to a certain value. This is
intended for example for the use with the
“TLParamsLocked” standard feature. Only the GenTL
Producer knows when stream related features must be
locked. This event signals the lock ‘1’ or unlock ‘0’ of
that feature.
The value of a specified feature is changed via its
IValue interface, thus a string information is set. No
error reporting is done. If that feature is not set or an
error occurs no operation is executed and the GenTL
Producer is not informed.

Feature Device Event Device
(remote
Device)

This event communicates to a calling GenTL
Consumer that a GenApi understandable event
occurred. The event ID and optional data delivered
with this event can be put into a GenApi Adapter
which then invalidates all related nodes.

4.2.2 Event Data Queue
The event data queue is the core of the Signaling. This is a thread safe queue holding event
type specific data. Operations on this queue must be locked for example via a mutex in a way
that its content may not change when either one of the event functions is accessing it or the
module specific thread is accessing it. The GenTL Producer implementation therefore must
make sure that access to the queue is as short as possible. Alternatively a lock free queue can
be used which supports dequeued operation from multiple threads.

An event object’ state is signaled as long as the event data queue is not empty.

Each event data queue must have its own lock if any to secure the state of each instance and to
achieve necessary parallelism. Both read and write operations must be locked. The two
operations of event data retrieval and the event object signal state handling in the
EventGetData function must be atomic. Meaning that, if a lock is used, the lock on the

 10 November 2009 Page 32 of 92

Version 1.1 GenTL Standard

event data queue must be maintained over both operations. Also the operation of putting data
in the queue and event object state handling must be atomic.

4.2.3 Event Handling
The handling of the event objects is always the same independent on the event type. The
signal reason and the signal data of course depend on the event type. The complete state
handling is done by the GenTL Producer driver. The GenTL Consumer may call the
EventKill function to terminate a single instance of a waiting EventGetData operation.
This means that if more than one thread waits for an event, the EventKill function
terminates only one wait operation and other threads will continue execution.

The following categories of operations can be differentiated:

Registration
Before the GenTL Consumer can be informed about an event, the event object must be
registered. After a module instance has been created in the enumeration process an event
object can be created with the GCRegisterEvent function. This function returns a unique
EVENT_HANDLE which identifies the registered event object. To get information about a
registered event the EventGetInfo function can be used. There must be only one event
registered per module and event type. If an event object is registered twice on the same
module the GCRegisterEvent function must return an error
GC_ERR_RESOURCE_IN_USE.

To unregister an event object the GCUnregisterEvent function must be called. If a
module is closed all event registrations are automatically unregistered.

After an EVENT_HANDLE is obtained the GenTL Consumer can wait for the event object to
be signaled by calling the EventGetData function. Upon delivery of an event, the event
object carries data. This data is copied into a GenTL Consumer provided buffer when the call
to EventGetData was successful. The default buffer size, which is always capable of
holding all event data, can be queried through the EventGetInfo function.

Notification and Data Retrieval
If the event object is signaled, data was put into the event data queue at some point in time.
The EventGetData function can be called to retrieve the actual data. As long as there is
only one listener thread this function always returns the stored data or, if no data is available
waits for an event being signaled with the provided timeout. If multiple listener threads are
present only one of them returns with the event data while the others stay in a waiting state
until either a timeout occurs, EventKill is issued or until the next event data is available.

When data is read with this function the data is removed from the queue. Afterwards the
GenTL Producer implementation checks whether the event data queue is empty or not. If
there is more data available the event object stays signaled and next the call to
EventGetData will deliver the next queue entry. Otherwise the event object is reset to not
signaled state.

The exact type of data is dependent on the event type. The data is copied into a user buffer
allocated by the GenTL Consumer. The content of the event data can be queried with the

 10 November 2009 Page 33 of 92

Version 1.1 GenTL Standard

EventGetDataInfo function. No data size query must be performed. A call with a NULL
pointer for the buffer will remove the data from the queue without delivering it. The
maximum size of the buffer to be filled is defined by the event type. This information can be
queried using the EventGetInfo function.

If queued event data is not needed anymore the queue can be emptied by calling the
GCFlushEvent function on the associated EVENT_HANDLE.

Signals that occur without a corresponding event object registered using
GCRegisterEvent are silently discarded.

4.2.4 Example
This sample shows how to register a NewBuffer event.
{
 GCRegisterEvent(hDS, ID_NEW_BUFFER, hNewBufferEvent);
 CreateThread (AcqFunction);
}

AcqFunction
{
 while (!EndRun)
 {
 EventGetData(hNewBufferEvent, EventData);
 if (successful)
 {
 // Do something with the new buffer
 }
 }
}

 10 November 2009 Page 34 of 92

Version 1.1 GenTL Standard

5 Acquisition Engine

5.1 Overview
The acquisition engine is the core of the GenTL data stream. Its task is the transportation
itself, which mainly consists of the buffer management.

As stated before the goal for the acquisition engine is to abstract the underlying acquisition
mechanism so that it can be used, if not for all, then for most of the acquisition technologies
on the market. The target is to acquire data coming from an input stream into memory buffers
provided by the GenTL Consumer or made accessible to the GenTL Consumer. The internal
design is up to the individual implementation, but there are a few directives it has to follow.

As an essential management element a GenTL acquisition engine holds a number of internal
logical buffer pools:

5.1.1 Announced Buffer Pool
All announced buffers are referenced here and are thus known to the acquisition engine. A
buffer is known from the point when it is announced until it is revoked (removed from the
acquisition engine). No buffer may be added to or removed from this pool during acquisition.
This also means that a buffer will stay in this pool even when it is delivered to the GenTL
Consumer (see below).

The order of the buffers in the pool is not defined. The maximum possible number of buffers
in this pool is only limited due to the system resources. The minimum number of buffers in
the pool is one or more depending on the technology or the implementation to allow
streaming.

5.1.2 Input Buffer Pool
When the acquisition engine receives data from a device it will fill a buffer from this pool.
While a buffer is filled it is removed from the pool and if successful put into the output buffer
queue. If the transfer was not successful the buffer is returned to the input pool by default.

The order of the buffers in the pool is not defined. Only buffers present in the Announced
Buffer Pool can be in this pool. The maximum number of buffers in this pool is the number of
announced buffers.

5.1.3 Output Buffer Queue
Once a buffer has been successfully filled, it is placed into this queue. As soon as there is at
least one buffer in the output buffer queue a previous registered event object gets signaled and
the GenTL Consumer can retrieve the event data and thus can identify the filled buffer.

When the event data is retrieved the associated buffer is removed from the output buffer
queue. This also means that the data and thus the buffer can only be retrieved once. After the
buffer is removed from the output buffer queue (delivered) the acquisition engine must not
write data into it. Thus this is effectively a buffer locking mechanism.

In order to reuse this buffer a GenTL Consumer has to put the buffer back into the Input
Buffer Pool (requeue).

 10 November 2009 Page 35 of 92

Version 1.1 GenTL Standard

The order of the buffers is defined by the acquisition mode. Buffers are retrieved by the “New
Buffer” event in a logical first-in-first-out manner. If the acquisition engine does not remove
or reorder buffers in the Output Buffer Queue (see the different acquisition modes in the
GenICam Standard Feature Naming Convention), it is always the oldest buffer from the queue
that is returned to the GenTL Consumer. Only buffers present in the Announced Buffer Pool
which were filled can be in this queue.

5.2 Acquisition Chain
The following description shows the steps to acquire an image from the GenTL Consumer’s
point of view. Image or data acquisition is performed on the Data Stream module with the
functions using the DS_HANDLE. Thus before an acquisition can be carried out, an
enumeration of a Data Stream module has to be performed (see chapter 3 Module
Enumeration page 18ff). For a detailed description of the C functions and data types see
chapter 6 Software Interface page 42ff.

Prior to the following steps the remote device and, if necessary (in case a grabber is used), the
GenTL Device module should be configured to produce the desired image format. The remote
device’s PORT_HANDLE can be retrieved from the GenTL Device module’s DevGetPort
function.

 10 November 2009 Page 36 of 92

Version 1.1 GenTL Standard

delivered
buffer is locked for acquisition

queued for input
Resides in the InputBufferPool

awaiting delivery
Appended to the OutputQueue

NewBufferEvent is signalled

allocated

receiving data

buffer is known to the acquisition engine, thus referenced through AnnouncedBufferList

queue

announce revoke

allocate free

'arrival of new data''buffer contains new data'

GetEventData / flush

flush (to output)

alloc and announce revoke

flush (discard)

empty InputBufferPool

Figure 5-1: Acquisition chain seen from a buffer’s perspective (default acquisition mode)

5.2.1 Allocate Memory
First the size of a single buffer has to be obtained. This information is first queried from the
GenTL Data Stream module (important: not from the remote device). Check if the standard
feature “PayloadSize” is present or if the DSGetInfo with the command
STREAM_INFO_DEFINES_PAYLOADSIZE returns true. If not, query the information from
the remote device features. The remote device port can be retrieved via the DevGetPort
function from the according Device module. The GenTL Consumer has to select the right
streaming channel in the remote device and read the according “PayloadSize” standard
feature.

With that information one or multiple buffers can be allocated as the GenTL Consumer sees
fit. The allocation can also be done by the GenTL Producer driver with the combined
DSAllocAndAnnounceBuffer function. If the buffers are larger than requested it does
not matter and the real size can be obtained through the DSGetBufferInfo function. If the
buffers are smaller than requested the error event is fired on the buffer (if implemented) and
on the transmitting data stream and the buffer may only be partly filled.

 10 November 2009 Page 37 of 92

Version 1.1 GenTL Standard

5.2.2 Announce Buffers
All buffers to be used in the acquisition engine must be made known prior to their use.
Buffers can be added (announced) and removed (revoked) at any time no grab is active.
Along with the buffer memory a pointer to user data is passed which may point to a buffer
specific implementation. That pointer is delivered along with the Buffer module handle in the
“New Buffer” event.

The DSAnnounceBuffer and DSAllocAndAnnounceBuffer functions return a
unique BUFFER_HANDLE to identify the buffer in the process. The minimum number of
buffers that must be announced depends on the technology used. This information can be
queried from the Data Stream module features. If there is a known maximum this can also be
queried. Otherwise the number of buffers is only limited by available memory.

The acquisition engine normally stores additional data with the announced buffers to be able
to e.g. use DMA transfer to fill the buffers.

5.2.3 Queue Buffers
To acquire data at least one buffer has to be queued with the DSQueueBuffer function.
When a buffer is queued it is put into the Input Buffer Pool. The user has to explicitly call
DSQueueBuffer to place the buffers into the Input Buffer Pool. The order in which the
buffers are queued does not need to match the order in which they were announced. Also the
queue order does not necessarily have an influence in which order the buffers are filled. This
depends only on the acquisition mode.

5.2.4 Register “New Buffer” Event
An event object to the data stream must be registered using the NewBufferEvent ID in
order to be notified on newly filled buffers. The GCRegisterEvent function returns a
unique EVENT_HANDLE which can be used to obtain event specific data when the event was
signaled. For the “New Buffer” event this data is the BUFFER_HANDLE and the user data
pointer.

5.2.5 Start Acquisition
First the acquisition engine on the host is started with the DSStartAcquisition function.
After that start the acquisition on the device if necessary by querying the “StartAcquisition”
standard feature on the remote device via the GenICam GenApi. If the feature is present
execute the command.

5.2.6 Acquire Image Data
This action is performed in a loop:

• Wait for the “New Buffer” event to be signaled (see 4.2 Signaling page 30ff)

• Process image data

• Requeue buffer in the Input Buffer Pool

 10 November 2009 Page 38 of 92

Version 1.1 GenTL Standard

With the event data from the signaled event the newly filled buffer can be obtained and then
processed. As stated before no assumptions on the order of the buffers are made except that
the acquisition mode defines it.

Requeuing the buffers can be done in any order with the DSQueueBuffer function. As long
as the buffer is not in the Input Buffer Pool or in the Output Buffer Queue the acquisition
engine will not write into the buffer. Thus the buffer is effectively locked.

5.2.7 Stop Acquisition
When finished acquiring image data first stop the acquisition on the remote device if
necessary. This can be done by querying the “StopAcquisition” standard feature on the remote
device. If it is present the command should be executed. Afterwards the
DSStopAcquisition function is called to stop the acquisition on the host. By doing that
the status of the buffers does not change. That implies that a buffer that is in the Input Buffer
Pool remains there. This is the same for buffers in the Output Buffer Queue. This has the
advantage that buffers which were filled during the acquisition stop process still can be
retrieved and processed.

5.2.8 Flush Buffer Pools and Queues
In order to clear the state of the buffers to allow revoking them, the buffers have to be flushed
either with the DSFlushQueue function or with the EventFlush function. With the
DSFlushQueue function buffers from the Input Buffer Pool can either be flushed to the
Output Buffer Queue or discarded. Buffers from the Output Buffer Queue also must either be
processed or flushed. Flushing the Output Buffer Queue is done by calling EventFlush
function. Using the EventFlush function on the “New Buffer” event the buffers from the
Output Buffer Queue are discarded.

5.2.9 Revoke Buffers
To enable the acquisition engine to free all resources needed for acquiring image data revoke
the announced buffers. Buffers that are referenced in either the Input Buffer Pool or the
Output Buffer Queue can not be revoked. After revoking a buffer with the
DSRevokeBuffer function it is not known to the acquisition engine and thus can neither be
queued nor receive any image data.

The order in which buffers can be revoked depends on the method in which they where
announced. Buffers can be revoked in any order if they were announced by the
DSAnnounceBuffer function. More care has to be taken if the
DSAllocAndAnnounceBuffer function is used. Normally underlying acquisition
engines must not change the base pointer to the memory containing the data within a buffer
object. If the DSAllocAndAnnounceBuffer function is used the base pointer of a buffer
object may change after another buffer object has been revoked using the
DSRevokeBuffer function.

5.2.10 Free Memory
If the GenTL Consumer provided the memory for the buffers using the
DSAnnounceBuffer function it also has to free it. Memory allocated by the GenTL

 10 November 2009 Page 39 of 92

Version 1.1 GenTL Standard

Producer implementation with DSAllocAndAnnounceBuffer function is freed by the
library if necessary. The GenTL Consumer must not free this memory.

5.3 Acquisition Modes
Acquisition modes describe the internal buffer handling during acquisition. There is only one
mandatory default mode. More acquisition modes are defined in the GenICam Standard
Feature Naming Convention document.

A certain mode may differ from another in these aspects:

• Which buffer is taken from the Input Buffer Pool to be filled

• At which time a filled buffer is moved to the Output Buffer Queue and at which position it
is inserted

• Which buffer in the Output Buffer Queue is overwritten (if any at all) on an empty Input
Buffer Pool

The graphical description assumes that we are looking on an acquisition start scenario with
five announced and queued buffers B0 to B4 ready for acquisition. When a buffer is delivered
the image number is stated below that event. A solid bar on a buffer’s time line illustrates its
presence in a Buffer pool. A ramp indicates image transfer and therefore transition. During a
thin line the Buffer is controlled by the GenTL Consumer and locked for data reception.

5.3.1 Default Mode
The default mode is designed to be simple and flexible with only a few restrictions. This is
done to be able to map it to most acquisition techniques used today. If a specific technique
can not be mapped to this mode the goal has to be achieved by copying the data and
emulating the behavior in software.

In this scenario every acquired image is delivered to the GenTL Consumer if the mean
processing time is below the acquisition time. Peaks in processing time can be mitigated by a
larger number of buffers.

B 0

B 3

Image

B 2
B 1

B 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...

0 1 2 3 4 5 6 7 8 9 12 User

Request from User Deliver to UserInput PoolOutput Queue Image transfer Lost image transferRequest from User Deliver to UserOutput Queue Image transfer Lost image transfer

 10 November 2009 Page 40 of 92

Version 1.1 GenTL Standard

Figure 5-2: Default acquisition from the GenTL Consumer’s perspective

The buffer acquired first (the oldest) is always delivered to the GenTL Consumer. No buffer
is discarded or overwritten in the Output Buffer Queue. By successive calls to retrieve the
event data (and thus the buffers) all filled buffers are delivered in the order they were
acquired. This is done regardless of the time the buffer was filled.

It is not defined which buffer is taken from the Input Buffer Pool if new image data is
received. If no buffer is in the Input Buffer Pool (e.g. the requeuing rate falls behind the
transfer rate over a sufficient amount of time), an incoming image will be lost. The
acquisition engine will be stalled until a buffer is requeued.

Wrap-Up:

• There’s no defined order in which the buffers are taken from the Input Buffer Pool.

• As soon as it is filled a buffer is placed at the end of the Output Buffer Queue.

• The acquisition engine stalls if the Input Buffer Pool becomes empty and as long as a
buffer is queued.

 10 November 2009 Page 41 of 92

Version 1.1 GenTL Standard

6 Software Interface

6.1 Overview
A GenTL Producer implementation is provided as a platform dependent dynamic loadable
library; under Microsoft Windows platform this would be a dynamic link library (DLL). The
file extension of the library is ‘cti’ for “Common Transport Interface”.

To enable easy dynamical loading and to support a wide range of languages a C interface is
defined. It is designed to be minimal and complete regarding enumeration and the access to
Configuration and Signaling. This enables a quick implementation and reduces the workload
on testing.

All functions defined in this chapter are mandatory and must be implemented and exported in
the libraries interface; even if no implementation for a function is necessary.

6.1.1 Installation
In order to allow a GenTL Consumer to enumerate all available GenTL Producers two
environment variables GENICAM_GENTL{32/64}_PATH are introduced.

In order to install a GenTL Producer an installer needs to add the path where the GenTL
Producer implementation is found to this path variable. The entries within the variable are
separated by ‘;’ on Windows and ‘:’ on UNIX based systems. In order to allow different
directories for 32Bit and 64Bit implementations residing on the same system two variables
are defined: GENICAM_GENTL32_PATH for 32Bit GenTL Producer implementations and
GENICAM_GENTL64_PATH for 64Bit GenTL Producer implementations. A consumer may
pick the appropriate version of the environment variable.

6.1.2 Function Naming Convention
All functions of the TLI follow a common naming scheme:

Prefix Operation Specifier

Entries in italics are replaced by an actual value as follows:

Table 6-1: Function naming convention

Entry Description
Prefix Specifies the handle the function works on. The handle represents

the module used.
Values:
• GC if applicable for no or all modules (GC for GenICam)
• TL for System module (TL for Transport Layer)
• IF for Interface module (IF for Interface)
• Dev for Device module (Dev for Device)
• DS for Data Stream module (DS for Data Stream)
• Event for Event Objects

Operation Specifies the operation done on a certain module.
Values (choice):

 10 November 2009 Page 42 of 92

Version 1.1 GenTL Standard

Entry Description
• Open to open a module
• Close to close a module
• Get to query information about a module or object

Specifier This is optional. If an operation needs additional information, it is
provided by the Specifier.
Values (choice):
• xxxInfo to retrieve xxx-object specific information
• Numxxx to retrieve the number of xxx-objects

For example the function TLGetNumInterfaces works on the System module’s
TL_HANDLE and queries the number of available interfaces. TLClose for instance closes
the System module.

6.1.3 Memory and Object Management
The interface is designed in a way that objects and data allocated in the GenTL Producer
implementation are only freed or changed inside the library. Vice versa all objects and data
allocated by the calling GenTL Consumer must only be changed and freed by the calling
GenTL Consumer. No language specific features except the ones allowed by ANSI C and
published in the interface are allowed.

The function names of the exported functions must be undecorated. The function calling
convention is stdcall for x86 platforms and architecture dependent for other platforms.

This ensures that the GenTL Producer implementation and the calling GenTL Consumer can
use different heaps and different memory allocation strategies. Also language
interchangeability is easier handled this way.

For functions filling a buffer (e.g. a C string) the function can be called with a NULL pointer
for the char* parameter (buffer). The piSize parameter is then filled with the size of buffer
needed to hold the information in bytes. For C strings that does incorporate the terminating 0
character. A function expecting a C string as its parameter not containing a size parameter for
it expects a 0-terminated C string. Queries are not allowed for event data.

Objects that contain the state of one module’s instance are referenced by handles (void*). If
a module has been instantiated before and is opened again, the already existing handle has to
be returned. A close on the module will free the resource of the closed module and all
underlying or depending child modules. This is true as long as these calls are in the same
process space (see below). Thus if a Interface module is closed all attached Device, Data
Stream and Buffer modules are also closed.

6.1.4 Thread and Multiprocess Safety
If the platform supports threading, all functions must be thread safe to ensure data integrity
when a function is called from different threads in one process. If the platform supports
independent processes the GenTL Producer implementation must establish interprocess
communication. At minimum other processes are not allowed to use an opened System

 10 November 2009 Page 43 of 92

Version 1.1 GenTL Standard

module. It is recommended though that a GenTL Producer implementation is multi process
capable to the point where:

• Access rights for the Modules are checked
An open Device module should be locked against multiple process access. In that case an
error should be returned.

• Data/state safety is ensured
Reference counting must be done so that if e.g. the System module of one process is
closed the resources of another process are not automatically freed.

• Different processes can communicate with different devices
Each process should be able to communicate with one or multiple devices. Also different
processes should be able to communicate with different devices.

6.1.5 Error Handling
Every function has as its return value a GC_ERROR. This value indicates the status of the
operation. Functions must give strong exception safety. With an exception not a language
dependent exception object is meant, but an execution error in the called function with a
return code other than GC_ERR_SUCCESS. No exception objects may be thrown of any
exported function. Strong exception safety means:

• Data validity is preserved
No data becomes corrupted or leaked.

• State is unchanged
First the internal state must stay consistent and it must be as if the function encountering
the error was never called. Therefore the output values of a function are to be handled as if
being invalid if the function returns an error code.

This ensures that calling GenTL Consumers always can expect a known state in the GenTL
Producer implementation: either it is the desired state when a function call was successful or
it is the state the GenTL Producer implementation had before the call.

The following values are defined:

Table 6-2: C interface error codes

Enumerator Value Description
GC_ERR_SUCCESS 0 Operation was successful; no error

occurred.
GC_ERR_ERROR -1001 Unspecified runtime error.
GC_ERR_NOT_INITIALIZED -1002 Module not initialized; e.g.

GCInitLib was not called.
GC_ERR_NOT_IMPLEMENTED -1003 Requested operation not implemented;

e.g. no Port functions on a Buffer
module.

GC_ERR_RESOURCE_IN_USE -1004 Requested module is used; e.g. in
another process.

GC_ERR_ACCESS_DENIED -1005 Requested operation is not allowed;

 10 November 2009 Page 44 of 92

Version 1.1 GenTL Standard

Enumerator Value Description
e.g. a remote device is opened by
another client.

GC_ERR_INVALID_HANDLE -1006 Given handle does not support the
operation; e.g. function call on wrong
handle or NULL pointer.

GC_ERR_INVALID_ID -1007 ID could not be connected to a
resource; e.g. a device with the given
ID is currently not available.

GC_ERR_NO_DATA -1008 The function has no data to work on;
e.g. the GCGetEventData function
was called on an empty event data
queue.

GC_ERR_INVALID_PARAMETER -1009 One of the parameter given was not
valid or out of range and none of the
error codes above fits.

GC_ERR_IO -1010 Communication error has occurred;
for example a read or write operation
to a remote device failed.

GC_ERR_TIMEOUT -1011 An operation’s timeout time expired
before it could be completed.

GC_ERR_ABORT -1012 An operation has been aborted before
it could be completed. For example a
wait operation through
EventGetData has been terminated
via a call to EventKill.

GC_ERR_INVALID_BUFFER -1013 No Buffer announced or one or more
buffers with invalid buffer size.

GC_ERR_CUSTOM_ID -10000 Any error smaller or equal than –
10000 is implementation specific

To get a detailed descriptive text about the error reason call the GCGetLastError function.

This section contains all definitions valid for the whole C interface and functions bound only
to the library itself.

6.2 Used Data Types
To have a defined stack layout certain data types have a primitive data type as its base.

GC_ERROR
The return value of all functions is a 32 bit signed integer value.

Handles
All handles like TL_HANDLE or PORT_HANDLE are void*. The size is platform dependent
(e.g. 32 bit on 32 bit platforms)

 10 November 2009 Page 45 of 92

Version 1.1 GenTL Standard

Enumerations
All enumerations are of type enum. In order to allow implementation specific extensions all
enums are accompanied by a 32 bit integer value. On platforms/compilers where this is not
the case a primitive data type with a matching size is to be used.

Buffers and C Strings
Buffers are normally typed as void* if arbitrary data is accessed. For specialized buffers like
for C strings a char* is used. A char is expected to have 8 bit. On platforms/compilers
where this is not the case a byte like primitive data type must be used.

String encoding is ASCII (characters with numerical values up to and including 127). A string
as an input value without a size parameter must be 0-terminated. Strings with a size parameter
must include the terminating 0.

Primitive Data Types
The size_t type indicates that a buffer size is represented. This is a platform dependent
unsigned integer (e.g. 32 bit on 32 bit platforms).

The other functions use a notation defining its base type and size. uint8_t stands for an
unsigned integer with the size of 8 bits. int32_t is a signed integer with 32 bits size.

6.3 Function Declarations

6.3.1 Library Functions

GC_ERROR GCCloseLib (void)

This function must be called after no function of the GenTL library is needed anymore to
clean up the resources from the GCInitLib function call. Multiple calls should be ignored.

GCGetLastError must not be called after the call of this function!

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR GCGetInfo (TL_INFO_CMD iInfoCmd,
INFO_DATATYPE * piType,
void * pBuffer,
size_t * piSize)

Inquire information about a GenTL implementation without opening the TL. The available
information is limited since the TL is not initialized yet. Even if this function works on a
closed library, GCInitLib must be called prior calling this function.

If the provided buffer is too small to receive all information an error is returned.

Parameters
[in] iInfoCmd Information to be retrieved as defined in TL_INFO_CMD.

 10 November 2009 Page 46 of 92

Version 1.1 GenTL Standard

[out] piType Data type of the pBuffer content as defined in the
TL_INFO_CMD and INFO_DATATYPE.

[in,out] pBuffer Pointer to a user allocated buffer to receive the requested
information. If this parameter is NULL, piSize will contain the
minimal size of pBuffer in bytes. If the iType is a string the
size includes the terminating 0.

[in,out] piSize pBuffer equal NULL:
out: minimal size of pBuffer in bytes to hold all information
pBuffer unequal NULL:
in: size of the provided pBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR GCGetLastError (GC_ERROR * piErrorCode,
char * sErrorText,
size_t * piSize)

Returns a readable text description of the last error occurred in the local thread context.

If multiple threads are supported on a platform this function must store this information thread
local.

Parameters
[out] piErrorCode Error code of the last error.
[in,out] sErrorText Pointer to a user allocated C string buffer to receive the last

error text. If this parameter is NULL, piSize will contain the
needed size of sErrorText in bytes. The size includes the
terminating 0.

 [in,out] piSize pBuffer equal NULL:
out: minimal size of pBuffer in bytes to hold all information
pBuffer unequal NULL:
in: size of the provided pBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR GCInitLib (void)

This function must be called prior to any other function call to allow global initialization of
the GenTL Producer driver. This function is necessary since automated initialization
functionality like within DllMain on MS Windows platforms is very limited. Multiple calls
should be ignored.

 10 November 2009 Page 47 of 92

Version 1.1 GenTL Standard

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

6.3.2 System Functions

GC_ERROR TLClose (TL_HANDLE hSystem)

Closes the System module associated with the given hSystem handle. This closes the whole
GenTL Producer driver and frees all resources. Call the GCCloseLib function afterwards if
the library is not needed anymore.

Parameters
[in] hSystem System module handle to close.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR TLGetInfo (TL_HANDLE hSystem,
TL_INFO_CMD iInfoCmd,
INFO_DATATYPE * piType,
void * pBuffer,
size_t * piSize)

Inquire information about the System module as defined in TL_INFO_CMD.

Parameters
[in] hSystem System module to work on.
[in] iInfoCmd Information to be retrieved as defined in TL_INFO_CMD.
[out] piType Data type of the pBuffer content as defined in the

TL_INFO_CMD and INFO_DATATYPE.
[in,out] pBuffer Pointer to a user allocated buffer to receive the requested

information. If this parameter is NULL, piSize will contain the
minimal size of pBuffer in bytes. If the piType is a string the
size includes the terminating 0.

[in,out] piSize pBuffer equal NULL:
out: minimal size of pBuffer in bytes to hold all information
pBuffer unequal NULL:
in: size of the provided pBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

 10 November 2009 Page 48 of 92

Version 1.1 GenTL Standard

GC_ERROR TLGetInterfaceID (TL_HANDLE hSystem,
uint32_t iIndex,
char * sIfaceID,
size_t * piSize)

Queries the unique ID of the interface at iIndex in the internal interface list. Prior to this call
the TLUpdateInterfaceList function must be called. The list content will not change
until the next call of the update function.

Parameters
[in] hSystem System module to work on.
[in] iIndex Zero-based index of the interface on this system.
[in,out] sIfaceID Pointer to a user allocated C string buffer to receive the

Interface module ID at the given iIndex. If this parameter is
NULL, piSize will contain the needed size of sIfaceID in
bytes. The size includes the terminating 0.

[in,out] piSize pBuffer equal NULL:
out: minimal size of pBuffer in bytes to hold all information
pBuffer unequal NULL:
in: size of the provided pBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR TLGetInterfaceInfo (TL_HANDLE hSystem,
const char * sIfaceID,
INTERFACE_INFO_CMD iInfoCmd,
INFO_DATATYPE * piType,
void * pBuffer,
size_t * piSize)

Inquire information about an interface on the given System module hSystem as defined in
INTERFACE_INFO_CMD without opening the interface.

Parameters
[in] hSystem System module to work on.
[in] sIfaceID Unique ID of the interface to inquire information from.
[in] iInfoCmd Information to be retrieved as defined in

INTERFACE_INFO_CMD.
[out] piType Data type of the pBuffer content as defined in the

INTERFACE_INFO_CMD and INFO_DATATYPE.
[in,out] pBuffer Pointer to a user allocated buffer to receive the requested

information. If this parameter is NULL, piSize will contain the
minimal size of pBuffer in bytes. If the piType is a string the
size includes the terminating 0.

 10 November 2009 Page 49 of 92

Version 1.1 GenTL Standard

[in,out] piSize pBuffer equal NULL:
out: minimal size of pBuffer in bytes to hold all information
pBuffer unequal NULL:
in: size of the provided pBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR TLGetNumInterfaces (TL_HANDLE hSystem,
uint32_t * piNumIfaces)

Queries the number of available interfaces on this System module. Prior to this call the
TLUpdateInterfaceList function must be called. The list content will not change until
the next call of the update function.

Parameters
[in] hSystem System module to work on.
[out] piNumIfaces Number of interfaces on this System module.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR TLOpen (TL_HANDLE * phSystem)

Opens the System module and puts the instance in the phSystem handle. This allocates all
system wide resources. Call the GCInitLib function before this function. A System module
can only be opened once.

Parameters
[out] phSystem System module handle of the newly opened system.

Returns
GC_ERROR: GC_ERR_RESOURCE_IN_USE if the module is currently open.

Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR TLOpenInterface (TL_HANDLE hSystem,
const char * sIfaceID,
IF_HANDLE * phIface)

Opens the given sIfaceID on the given hSystem.

Any subsequent call to TLOpenInterface with an sIfaceID which has already been
opened will return an error GC_ERR_RESOURCE_IN_USE.

The interface ID need not match the one returned from TLGetInterfaceID. As long as
the GenTL Producer knows how to interpret that ID it will return a valid handle. For example,

 10 November 2009 Page 50 of 92

Version 1.1 GenTL Standard

if in a specific implementation the interface has a user-defined name, this function will return
a valid handle as long as the provided name refers to an internally known interface.

Parameters
[in] hSystem System module to work on.
[in] sIfaceID Unique interface ID to open as a 0-terminated C string.
[out] phIface Interface handle of the newly created interface.

Returns
GC_ERROR: GC_ERR_RESOURCE_IN_USE if the module is currently open.

Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR TLUpdateInterfaceList (TL_HANDLE hSystem,
bool8_t * pbChanged,
uint64_t iTimeout)

Updates the internal list of available interfaces. This may change the connection between a list
index and an interface ID.

Parameters
[in] hSystem System module to work on.
[out] pbChanged Contains true if the internal list was changed and false

otherwise. If set to NULL nothing is written to this parameter.
[in] iTimeout Timeout in ms. If set to 0xFFFFFFFFFFFFFFFF the timeout

is infinite.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

6.3.3 Interface Functions

GC_ERROR IFClose (IF_HANDLE hIface)

Closes the Interface module associated with the given hIface handle. This closes all dependent
Device modules and frees all interface related resources.

Parameters
[in] hSystem System module handle to close.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

 10 November 2009 Page 51 of 92

Version 1.1 GenTL Standard

GC_ERROR IFGetInfo (IF_HANDLE hIface,
INTERFACE_INFO_CMD iInfoCmd,
INFO_DATATYPE * piType,
void * pBuffer,
size_t * piSize)

Inquire information about the Interface module as defined in INTERFACE_INFO_CMD.

Parameters
[in] hIface Interface module to work on.
[in] iInfoCmd Information to be retrieved as defined in

INTERFACE_INFO_CMD.
[out] piType Data type of the pBuffer content as defined in the

INTERFACE_INFO_CMD and INFO_DATATYPE.
[in,out] pBuffer Pointer to a user allocated buffer to receive the requested

information. If this parameter is NULL, piSize will contain the
minimal size of pBuffer in bytes. If the piType is a string the
size includes the terminating 0.

[in,out] piSize pBuffer equal NULL:
out: minimal size of pBuffer in bytes to hold all information
pBuffer unequal NULL:
in: size of the provided pBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR IFGetDeviceID (IF_HANDLE hIface,
uint32_t iIndex,
char * sDeviceID,
size_t * piSize)

Queries the unique ID of the device at iIndex in the internal device list. Prior to this call the
IFUpdateDeviceList function must be called. The list content will not change until the
next call of the update function.

Parameters
[in] hIface Interface module to work on.
[in] iIndex Zero-based index of the device on this interface.
[in,out] sDeviceID Pointer to a user allocated C string buffer to receive the

Device module ID at the given iIndex. If this parameter is
NULL, piSize will contain the needed size of sDeviceID in
bytes. The size includes the terminating 0.

[in,out] piSize pBuffer equal NULL:
out: minimal size of pBuffer in bytes to hold all information
pBuffer unequal NULL:

 10 November 2009 Page 52 of 92

Version 1.1 GenTL Standard

in: size of the provided pBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR IFGetDeviceInfo (IF_HANDLE hIface,
const char * sDeviceID,
DEVICE_INFO_CMD iInfoCmd,
INFO_DATATYPE * piType,
void * pBuffer,
size_t * piSize)

Inquire information about a device on the given Interface module hIface as defined in
DEVICE_INFO_CMD without opening the device.

Parameters
[in] hIface Interface module to work on.
[in] sDeviceID Unique ID of the device to inquire information about.
[in] iInfoCmd Information to be retrieved as defined in

DEVICE_INFO_CMD.
[out] piType Data type of the pBuffer content as defined in the

DEVICE_INFO_CMD and INFO_DATATYPE.
[in,out] pBuffer Pointer to a user allocated buffer to receive the requested

information. If this parameter is NULL, piSize will contain the
minimal size of pBuffer in bytes. If the piType is a string the
size includes the terminating 0.

[in,out] piSize pBuffer equal NULL:
out: minimal size of pBuffer in bytes to hold all information
pBuffer unequal NULL:
in: size of the provided pBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR IFGetNumDevices (IF_HANDLE hIface,
uint32_t * piNumDevices)

Queries the number of available devices on this Interface module. Prior to this call the
IFUpdateDeviceList function must be called. The list content will not change until the
next call of the update function.

Parameters
[in] hIface Interface module to work on.
[out] piNumDevices Number of devices on this Interface module.

 10 November 2009 Page 53 of 92

Version 1.1 GenTL Standard

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR IFOpenDevice (IF_HANDLE hIface,
const char * sDeviceID,
DEVICE_ACCESS_FLAGS iOpenFlags,
DEV_HANDLE * phDevice)

Opens the given sDeviceID with the given iOpenFlags on the given hIface.

.

Any subsequent call to IFOpenDevice with an sDeviceID which has already been opened
will return an error GC_ERR_RESOURCE_IN_USE.

The device ID need not match the one returned from IFGetDeviceID. As long as the
GenTL Producer knows how to interpret that ID it will return a valid handle. For example, if
in a specific implementation the device has a user-defined name, this function will return a
valid handle as long as the provided name refers to an internally known device.

Parameters
[in] hIface Interface module to work on.
[in] sDeviceID Unique device ID to open as a 0-terminated C string.
[in] iOpenFlags Configures the open process as defined in the

DEVICE_ACCESS_FLAGS.
[out] phDevice Device handle of the newly created Device module.

Returns
GC_ERROR: GC_ERR_RESOURCE_IN_USE if the module is currently open.

Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR IFUpdateDeviceList (IF_HANDLE hIface,
bool8_t * pbChanged,
uint64_t iTimeout)

Updates the internal list of available devices. This may change the connection between a list
index and a device ID.

Parameters
[in] hIface Interface module to work on.
[out] pbChanged Contains true if the internal list was changed and false

otherwise. If set to NULL nothing is written to this parameter.
[in] iTimeout Timeout in ms. If set to 0xFFFFFFFFFFFFFFFF the timeout

is infinite.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

 10 November 2009 Page 54 of 92

Version 1.1 GenTL Standard

6.3.4 Device Functions

GC_ERROR DevClose (DEV_HANDLE hDevice)

Closes the Device module associated with the given hDevice handle. This frees all resources
of the Device module and closes all dependent Data Stream module instances.

Parameters
[in] hDevice Device module handle to close.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR DevGetInfo (DEV_HANDLE hDevice,
DEVICE_INFO_CMD iInfoCmd,
INFO_DATATYPE * piType,
void * pBuffer,
size_t * piSize)

Inquire information about the Device module as defined in DEVICE_INFO_CMD.

Parameters
[in] hDevice Device module to work on.
[in] iInfoCmd Information to be retrieved as defined in

DEVICE_INFO_CMD.
[out] piType Data type of the pBuffer content as defined in the

DEVICE_INFO_CMD and INFO_DATATYPE.
[in,out] pBuffer Pointer to a user allocated buffer to receive the requested

information. If this parameter is NULL, piSize will contain the
minimal size of pBuffer in bytes. If the piType is a string the
size includes the terminating 0.

[in,out] piSize pBuffer equal NULL:
out: minimal size of pBuffer in bytes to hold all information
pBuffer unequal NULL:
in: size of the provided pBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

 10 November 2009 Page 55 of 92

Version 1.1 GenTL Standard

GC_ERROR DevGetDataStreamID (DEV_HANDLE hDevice,
uint32_t iIndex,
char * sDataStreamID,
size_t * piSize)

Queries the unique ID of the data stream at iIndex in the internal data stream list.

Parameters
[in] hDevice Device module to work on.
[in] iIndex Zero-based index of the data stream on this device.
[in,out] sDataStreamID Pointer to a user allocated C string buffer to receive the

Interface module ID at the given iIndex. If this parameter is
NULL, piSize will contain the needed size of sDataStreamID
in bytes. The size includes the terminating 0.

[in,out] piSize pBuffer equal NULL:
out: minimal size of pBuffer in bytes to hold all information
pBuffer unequal NULL:
in: size of the provided pBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR DevGetNumDataStreams(DEV_HANDLE hDevice,
uint32_t * piNumDataStreams)

Queries the number of available data streams on this Device module.

Parameters
[in] hDevice Device module to work on.
[out] piNumDataStreams Number of data stream on this Device module.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR DevGetPort (DEV_HANDLE hDevice,
PORT_HANDLE * phRemoteDev)

Retrieves the port handle for the associated remote device.

This function does not return the handle for the Port functions for the Device module but for
the physical remote device.

The phRemoteDev handle must not be closed explicitly. This is done automatically when
DevClose is called on this Device module.

Parameters
[in] hDevice Device module to work on.

 10 November 2009 Page 56 of 92

Version 1.1 GenTL Standard

[out] phRemoteDev Port handle for the remote device.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR DevOpenDataStream (DEV_HANDLE hDevice,
const char * sDataStreamID,
DS_HANDLE * phDataStream)

Opens the given sDataStreamID on the given hDevice.

Any subsequent call to DevOpenDataStream with an sDataStreamID which has already
been opened will return an error GC_ERR_RESOURCE_IN_USE.

The Data Stream ID need not match the one returned from DevGetDataStreamID. As
long as the GenTL Producer knows how to interpret that ID it will return a valid handle. For
example, if in a specific implementation the data stream has a user defined name, this
function will return a valid handle as long as the provided name refers to an internally known
data stream.

Parameters
[in] hDevice Device module to work on.
[in] sDataStreamID Unique data stream ID to open as a 0-terminated C string.
[out] phDataStream Data Stream module handle of the newly created stream.

Returns
GC_ERROR: GC_ERR_RESOURCE_IN_USE if the module is currently open.

Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

6.3.5 Data Stream Functions

GC_ERROR DSAllocAndAnnounceBuffer (DS_HANDLE hDataStream,
size_t iBufferSize,
void * pPrivate,
BUFFER_HANDLE * phBuffer)

This function allocates the memory for a single buffer and announces this buffer to the Data
Stream associated with the hDataStream handle and returns a hBuffer handle which
references that single buffer until the buffer is revoked. This will allocate internal resources
which will be freed upon a call to DSRevokeBuffer.

Announcing a buffer to a data stream does not mean that this buffer will be automatically
queued for acquisition. This is done through a separate call to DSQueueBuffer.

The memory referenced in this buffer must stay valid until a buffer is revoked with
DSRevokeBuffer.

 10 November 2009 Page 57 of 92

Version 1.1 GenTL Standard

Every call of this function must be matched with a call of DSRevokeBuffer.

Parameters
[in] hDataStream Data Stream module to work on.
[in] iBufferSize Size of the buffer in bytes.
[in] pPrivate Pointer to private data which will be passed to the GenTL

Consumer on NewBuffer events.
[out] phBuffer Buffer module handle of the newly announced buffer.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR DSAnnounceBuffer (DS_HANDLE hDataStream,
void * pBuffer,
size_t iSize,
void * pPrivate,
BUFFER_HANDLE * phBuffer)

This announces a GenTL Consumer allocated memory to the Data Stream associated with the
hDataStream handle and returns a hBuffer handle which references that single buffer until the
buffer is revoked. This will allocate internal resources which will be freed upon a call to
DSRevokeBuffer.

Announcing a buffer to a data stream does not mean that this buffer will be automatically
queued for acquisition. This is done through a separate call to DSQueueBuffer.

The memory referenced in pBuffer must stay valid until the buffer is revoked with
DSRevokeBuffer. Every call of this function must be matched with a call of
DSRevokeBuffer.

A buffer can only be announced once. If a GenTL Consumer tries to announce an already
announced buffer the function will return an error GC_ERR_RESOURCE_IN_USE.

Parameters
[in] hDataStream Data Stream module to work on.
[in] pBuffer Pointer to buffer memory to announce.
[in] iSize Size of the pBuffer in bytes.
[in] pPrivate Pointer to private data which will be passed to the GenTL

Consumer on NewBuffer events.
[out] phBuffer Buffer module handle of the newly announced buffer.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

 10 November 2009 Page 58 of 92

Version 1.1 GenTL Standard

GC_ERROR DSClose (DS_HANDLE hDataStream)

Closes the Data Stream module associated with the given hDataStream handle. This frees all
resources of the Data Stream module, discards and revokes all buffers.

Parameters
[in] hDataStream Data Stream module handle to close.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR DSFlushQueue (DS_HANDLE hDataStream,
ACQ_QUEUE_TYPE iOperation)

Flushes the by iOperation defined internal buffer pool or queue to another one as defined in
ACQ_QUEUE_TYPE.

Parameters
[in] hDataStream Data Stream module to work on.
[in] iOperation Flush operation to perform as defined in

ACQ_QUEUE_TYPE.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR DSGetBufferID (DS_HANDLE hDataStream,
uint32_t iIndex,
BUFFER_HANDLE * phBuffer)

Queries the buffer handle for a given iIndex. The buffer handle works as a unique ID of the
Buffer module.

Note that the relation between index and buffer handle might change with additional
announced and/or revoked buffers. As long as no buffers are announced or revoked this
relation must not change.

The number of announced buffers can be queried with the DSGetInfo function.

Parameters
[in] hDataStream Data Stream module to work on.
[in] iIndex Zero-based index of the buffer on this data stream.
[in,out] phBuffer Buffer module handle of the given iIndex.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

 10 November 2009 Page 59 of 92

Version 1.1 GenTL Standard

GC_ERROR DSGetBufferInfo (DS_HANDLE hDataStream,
BUFFER_HANDLE hBuffer,
BUFFER_INFO_CMD iInfoCmd,
INFO_DATATYPE * piType,
void * pBuffer,
size_t * piSize)

Inquire information about the Buffer module associated with hBuffer on the hDataStream
instance as defined in BUFFER_INFO_CMD.

Parameters
[in] hDataStream Data Stream module to work on.
[in] hBuffer Buffer handle to retrieve information about.
[in] iInfoCmd Information to be retrieved as defined in

BUFFER_INFO_CMD.
[out] piType Data type of the pBuffer content as defined in the

BUFFER_INFO_CMD and INFO_DATATYPE.
[in,out] pBuffer Pointer to a user allocated buffer to receive the requested

information. If this parameter is NULL, piSize will contain the
minimal size of pBuffer in bytes. If the piType is a string the
size includes the terminating 0.

[in,out] piSize pBuffer equal NULL:
out: minimal size of pBuffer in bytes to hold all information
pBuffer unequal NULL:
in: size of the provided pBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR DSGetInfo (DS_HANDLE hDataStream,
STREAM_INFO_CMD iInfoCmd,
INFO_DATATYPE * piType,
void * pBuffer,
size_t * piSize)

Inquire information about the Data Stream module associated with hDataStream as defined in
STREAM_INFO_CMD.

Parameters
[in] hDataStream Data Stream module to work on.

 10 November 2009 Page 60 of 92

Version 1.1 GenTL Standard

 [in] iInfoCmd Information to be retrieved as defined in
STREAM_INFO_CMD.

[out] piType Data type of the pBuffer content as defined in the
STREAM_INFO_CMD and INFO_DATATYPE.

[in,out] pBuffer Pointer to a user allocated buffer to receive the requested
information. If this parameter is NULL, piSize will contain the
minimal size of pBuffer in bytes. If the piType is a string the
size includes the terminating 0.

[in,out] piSize pBuffer equal NULL:
out: minimal size of pBuffer in bytes to hold all information
pBuffer unequal NULL:
in: size of the provided pBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR DSQueueBuffer (DS_HANDLE hDataStream,
BUFFER_HANDLE hBuffer)

This function queues a particular buffer for acquisition. A buffer can be queued for
acquisition any time after the buffer was announced (before or after the acquisition has been
started) when it is not currently queued. Furthermore, a buffer which is already waiting to be
delivered can not be queued for acquisition. A queued buffer can not be revoked.

The order of the delivered buffers is not necessarily the same as the order in which they have
been queued.

Parameters
[in] hDataStream Data Stream module to work on.
[in] hBuffer Buffer handle to queue.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR DSRevokeBuffer (DS_HANDLE hDataStream,
BUFFER_HANDLE hBuffer,
void ** ppBuffer,
void ** ppPrivate)

Removes an announced buffer from the acquisition engine. This function will free all
internally allocated resources associated with this buffer. A buffer can only be revoked if it is
not queued in any queue. A buffer is automatically revoked when the stream is closed.

 10 November 2009 Page 61 of 92

Version 1.1 GenTL Standard

Parameters
[in] hDataStream Data Stream module to work on.
[in] hBuffer Buffer handle to revoke.
[out] ppBuffer Pointer to the buffer memory. This is for convenience if

GenTL Consumer allocated memory is used which is to be
freed. If the buffer was allocated by the GenTL Producer
NULL is to be returned. If the parameter is set to NULL it is
ignored

[out] ppPrivate Pointer to the user data pointer given in the announce
function. If the parameter is set to NULL it is ignored

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR DSStartAcquisition (DS_HANDLE hDataStream,
ACQ_START_FLAGS iStartFlags,
uint64_t iNumToAcquire)

Starts the acquisition engine on the host.

Parameters
[in] hDataStream Data Stream module to work on.
[in] iStartFlags As defined in ACQ_START_FLAGS.
[in] iNumToAcquire Sets the number of frames after which the acquisition engine

stops automatically. If set to 0xFFFFFFFFFFFFFFFF to the
acquisition must be stopped manually using the
DSStopAcquisition function.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

In case no Buffer is announced or one or more of the announced buffers are too small to
receive the provided stream a GC_ERR_INVALID_BUFFER must be returned.

GC_ERROR DSStopAcquisition (DS_HANDLE hDataStream,
ACQ_STOP_FLAGS iStopFlags)

Stops the acquisition engine on the host.

Parameters
[in] hDataStream Data Stream module to work on.
[in] iStopFlags Stops the acquisition as defined in ACQ_STOP_FLAGS.

 10 November 2009 Page 62 of 92

Version 1.1 GenTL Standard

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

6.3.6 Port Functions

GC_ERROR GCGetPortInfo (PORT_HANDLE hPort,
PORT_INFO_CMD iInfoCmd,
INFO_DATATYPE * piType,
void * pBuffer,
size_t * piSize)

Queries detailed port information as defined in PORT_INFO_CMD.

Parameters
[in] hPort Module or remote device port handle to access Port from.
[in] iInfoCmd Information to be retrieved as defined in PORT_INFO_CMD.
[out] piType Data type of the pBuffer content as defined in the

PORT_INFO_CMD and INFO_DATATYPE.
[in,out] pBuffer Pointer to a user allocated buffer to receive the requested

information. If this parameter is NULL, piSize will contain the
minimal size of pBuffer in bytes. If the piType is a string the
size includes the terminating 0.

[in,out] piSize pBuffer equal NULL:
out: minimal size of pBuffer in bytes to hold all information
pBuffer unequal NULL:
in: size of the provided pBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR GCGetPortURL (PORT_HANDLE hPort,
char * sURL,
size_t * piSize)

Retrieves a URL list with the XML description for the given hPort. See 4.1.2 XML
Description page 28 for more information about supported URLs. Each URL is terminated
with a trailing ‘\0’ and after the last URL are two ‘\0’.

In case of multiple XMLs in the device the GCGetNumPortURLs and
GCGetPortURLInfo should be used.

 10 November 2009 Page 63 of 92

Version 1.1 GenTL Standard

Parameters
[in] hPort Module or remote device port handle to access Port from.
[in,out] sURL Pointer to a user allocated string buffer to receive the list of

URLs If this parameter is NULL, piSize will contain the
needed size of sURL in bytes. Each entry in the list is 0
terminated. After the last entry there is an additional 0. The
size includes the terminating 0 characters.

[in,out] piSize sURL equal NULL:
out: minimal size of sURL in bytes to hold all information
sURL unequal NULL:
in: size of the provided sURL in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR GCGetNumPortURLs (PORT_HANDLE hPort,
uint32_t * iNumURLs)

Inquire the number of available URLs for this port.

Parameters
[in] hPort Module or remote device port handle to access Port from.
[out] iNumURLs Number of available URL entries.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR GCGetPortURLInfo (PORT_HANDLE hPort,
uint32_t iURLIndex,
URL_INFO_CMD iInfoCmd,
INFO_DATATYPE * piType,
void * pBuffer,
size_t * piSize)

Queries detailed port information as defined in URL_INFO_CMD.

Parameters
[in] hPort Module or remote device port handle to access Port from.
[in] iURLIndex Index of the URL to query.
[in] iInfoCmd Information to be retrieved as defined in URL_INFO_CMD.
[out] piType Data type of the pBuffer content as defined in the URL

URL_INFO_CMD and INFO_DATATYPE.

 10 November 2009 Page 64 of 92

Version 1.1 GenTL Standard

[in,out] pBuffer Pointer to a user allocated buffer to receive the requested
information. If this parameter is NULL, piSize will contain the
minimal size of pBuffer in bytes. If the piType is a string the
size includes the terminating 0.

[in,out] piSize pBuffer equal NULL:
out: minimal size of pBuffer in bytes to hold all information
pBuffer unequal NULL:
in: size of the provided pBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

If the GenTL implementation does not provide version information of the requested URLs it
must return GC_ERR_NOT_IMPLEMENTED.

If the device does not provide version information (for example manifest) it must return
GC_ERR_NO_DATA.

GC_ERROR GCReadPort (PORT_HANDLE hPort,
uint64_t iAddress,
void * pBuffer,
size_t * piSize)

Reads a number of bytes from a given iAddress from the specified hPort. This is the global
GenICam GenApi read access function for all ports implemented in the GenTL
implementation. The endianess of the data content is specified by the GCGetPortInfo
function.

If the underlying technology has alignment restrictions on the port read the GenTL Provider
implementation has to handle this internally. So for example if the underlying technology
only allows a uint32_t aligned access and the calling GenTLConsumer wants to read 5 bytes
starting at address 2. The implementation has to read 8 bytes starting at address 0 and then it
must only return the requested 5 bytes.

Parameters
[in] hPort Module or remote device port handle to access Port from.
[in] iAddress Byte address to read from.
[out] pBuffer Pointer to a user allocated byte buffer to receive data; this

must not be NULL.
[in,out] piSize Size of the provided pBuffer and thus the amount of bytes to

read from the register map; after the read operation this
parameter holds the information about the bytes actually
read.

 10 November 2009 Page 65 of 92

Version 1.1 GenTL Standard

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR GCWritePort (PORT_HANDLE hPort,
uint64_t iAddress,
const void * pBuffer,
size_t * piSize)

Writes a number of bytes at the given iAddress to the specified hPort. This is the global
GenICam GenApi write access function for all ports implemented in the GenTL
implementation. The endianess of the data content is specified by the GCGetPortInfo
function.

If the underlying technology has alignment restrictions on the port write the GenTL Provider
implementation has to handle this internally. So for example if the underlying technology
only allows a uint32_t aligned access and the calling GenTL Consumer wants to write 5 bytes
starting at address 2. The implementation has to read 8 bytes starting at address 0, replace the
5 bytes provided and then write the 8 bytes back (read modify write).

Parameters
[in] hPort Module or remote device port handle to access the Port from.
[in] iAddress Byte address to write to.
[in] pBuffer Pointer to a user allocated byte buffer containing the data to

write; this must not be NULL.
[in,out] piSize Size of the provided pBuffer and thus the amount of bytes to

write to the register map; after the write operation this
parameter holds the information about the bytes actually
written.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR GCWritePortStacked (PORT_HANDLE hPort,
struct
 PORT_REGISTER_STACK_ENTRY *
 pEntries,
size_t * piNumEntries)

Writes a number of bytes to the given address on the specified hPort for every element in the
pEntries array. The endianess of the data content is specified by the GCGetPortInfo
function.

 10 November 2009 Page 66 of 92

Version 1.1 GenTL Standard

If the underlying technology has alignment restrictions on the port write the GenTL Provider
implementation has to handle this internally. So for example if the underlying technology
only allows a uint32_t aligned access and the calling GenTL Consumer wants to write 5 bytes
starting at address 2. The implementation has to read 8 bytes starting at address 0, replace the
5 bytes provided and then write the 8 bytes back (read/modify/write).

In case of an error the function returns the number of successful writes in piNumEntries even
though it returns an error code as return value. This is an exception to the statement in the
section Error Handling.

Parameters
[in] hPort Module or remote device port handle to access the Port from.
[in] pEntries Array of structures containing write address and data to write.
[in,out] piNumEntries In: Number of entries in the array, Out: Number of successful

executed writes according to the entries in the pEntries array.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR GCReadPortStacked (PORT_HANDLE hPort,
struct
 PORT_REGISTER_STACK_ENTRY *
 pEntries,
size_t * piNumEntries)

Reads a number of bytes to the given address on the specified hPort for every element in the
pEntries array. The endianess of the data content is specified by the GCGetPortInfo
function.

If the underlying technology has alignment restrictions on the port write the GenTL Provider
implementation has to handle this internally. So for example if the underlying technology
only allows a uint32_t aligned access and the calling GenTL Consumer wants to read 5 bytes
starting at address 2. The implementation has to read 8 bytes starting at address 0 and to
extract the 5 bytes requested.

In case of an error the function returns the number of successful reads in piNumEntries even
though it returns an error code as return value. This is an exception to the statement in the
section Error Handling.

Parameters
[in] hPort Module or remote device port handle to access the Port from.
[in] pEntries Array of structures containing write address and data to write.

 10 November 2009 Page 67 of 92

Version 1.1 GenTL Standard

[in,out] piNumEntries In: Number of entries in the array, Out: Number of successful
executed reads according to the entries in the pEntries array.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

6.3.7 Signaling Functions

GC_ERROR EventFlush (EVENT_HANDLE hEvent)

Flushes all events in the given hEvent object. This call empties the event data queue.

Parameters
[in] hEvent Event handle to flush queue on.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR EventGetData (EVENT_HANDLE hEvent,
void * pBuffer,
size_t * piSize,
uint64_t iTimeout)

Retrieves the oldest event data from the event data queue associated with the hEvent.

The data content can be queried by the EventGetDataInfo function.

The default buffer size which can hold all the event data can be queried with the
EventGetInfo function. This needs to be queried only once. The default size must not
change during runtime.

Parameters
[in] hEvent Event handle to wait for
[out] pBuffer Pointer to a user allocated buffer to receive the event data.

The data type of the buffer is dependent on the event ID of
the hEvent. If this value is NULL the data is removed from
the queue without being delivered.

[in,out] piSize Size of the provided pBuffer in bytes; after the write
operation this parameter holds the information about the
bytes actually written.

[in] iTimeout Timeout for the wait in ms.
A value of 0xFFFFFFFFFFFFFFFF is interpreted as
INFINITE.

 10 November 2009 Page 68 of 92

Version 1.1 GenTL Standard

A value of 0 checks the state of the event object and returns
immediately either with a timeout or with event data.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR EventGetDataInfo (EVENT_HANDLE hEvent,
const void * pInBuffer,
size_t iInSize,
EVENT_DATA_INFO_CMD iInfoCmd,
INFO_DATATYPE * piType,
void * pOutBuffer,
size_t * piOutSize)

Parses the transport layer technology dependent event info.

Parameters
[in] hEvent Event handle to parse data from.
[in] pInBuffer Pointer to a buffer containing event data. This value must not

be NULL.
[in] iInSize Size of the provided pInBuffer in bytes
[in] iInfoCmd Information to be retrieved as defined in

EVENT_DATA_INFO_CMD and EVENT_TYPE.
[out] piType Data type of the pOutBuffer content as defined in the

EVENT_DATA_INFO_CMD, EVENT_TYPE and
INFO_DATATYPE.

[in,out] pOutBuffer Pointer to a user allocated buffer to receive the requested
information. If this parameter is NULL, piOutSize will contain
the minimal size of pOutBuffer in bytes. If the piType is a
string the size includes the terminating 0.

[in,out] piOutSize pOutBuffer equal NULL:
out: minimal size of pOutBuffer in bytes to hold all
information
pOutBuffer unequal NULL:
in: size of the provided pOutBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

 10 November 2009 Page 69 of 92

Version 1.1 GenTL Standard

GC_ERROR EventGetInfo (EVENT_HANDLE hEvent,
EVENT_INFO_CMD iInfoCmd,
INFO_DATATYPE * piType,
void * pBuffer,
size_t * piSize)

Retrieves information about the given hEvent object as defined in EVENT_INFO_CMD.

Parameters
[in] hEvent Event handle to retrieve info from.
[in] iInfoCmd Information to be retrieved as defined in

EVENT_INFO_CMD.
[out] piType Data type of the pBuffer content as defined in the

EVENT_INFO_CMD and INFO_DATATYPE.
[in,out] pBuffer Pointer to a user allocated buffer to receive the requested

information. If this parameter is NULL, piSize will contain the
minimal size of pBuffer in bytes. If the piType is a string the
size includes the terminating 0.

[in,out] piSize pBuffer equal NULL:
out: minimal size of pBuffer in bytes to hold all information
pBuffer unequal NULL:
in: size of the provided pBuffer in bytes
out: number of bytes filled by the function

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

GC_ERROR EventKill (EVENT_HANDLE hEvent)

Terminate any waiting operation on a previously registered event object. In case of multiple
pending wait operations EventKill causes one wait operation to return. Therefore in order
to cancel all pending wait operations EventKill must be called as many times as wait
operations are pending.

EventKill does not free any resources.

Parameters
[in] hEvent Handle to event object.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

 10 November 2009 Page 70 of 92

Version 1.1 GenTL Standard

GC_ERROR GCRegisterEvent (EVENTSRC_HANDLE hModule,
EVENT_TYPE iEventID,
EVENT_HANDLE * phEvent)

Registers an event object to a certain iEventID. The implementation might change depending
on the platform.

Every event registered must be unregistered with the GCUnregisterEvent function.

Parameters
[in] hModule Module handle to access to register event to.
[in] iEventID Event type to register as defined in EVENT_TYPE.
[out] phEvent New handle to an event object to work with.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44. If the
given iEventID has been registered before on the given hModule this function returns
GC_ERR_RESOURCE_IN_USE.

GC_ERROR GCUnregisterEvent (EVENTSRC_HANDLE hModule,
EVENT_TYPE iEventID)

Unregisters the given iEventID from the given hModule.

Parameters
[in] hModule Module handle to access to register event to.
[in] iEventID Event type to unregister as defined in EVENT_TYPE.

Returns
GC_ERROR: Unequal GC_ERR_SUCCESS on error. See 6.1.5 Error Handling page 44.

6.4 Enumerations
Enumeration values are signed 32 bit integers.

6.4.1 Library and System Enumerations

enum INFO_DATATYPE

Defines the data type possible for the various Info functions. The data type itself may define
its size. For buffer or string types the piSize parameter must be used to query the actual
amount of data being written.

Enumerator Value Description
INFO_DATATYPE_UNKNOWN 0 Unknown data type. This value is

never returned from a function but can

 10 November 2009 Page 71 of 92

Version 1.1 GenTL Standard

Enumerator Value Description
be used to initialize the variable to
inquire the type.

INFO_DATATYPE_STRING 1 0-terminated C string (ASCII
encoded).

INFO_DATATYPE_STRINGLIST 2 Concatenated
INFO_DATATYPE_STRING list. End
of list is signaled with an additional 0.

INFO_DATATYPE_INT16 3 Signed 16 bit integer.
INFO_DATATYPE_UINT16 4 Unsigned 16 bit integer.
INFO_DATATYPE_INT32 5 Signed 32 bit integer.
INFO_DATATYPE_UINT32 6 Unsigned 32 bit integer.
INFO_DATATYPE_INT64 7 Signed 64 bit integer.
INFO_DATATYPE_UINT64 8 Unsigned 64 bit integer.
INFO_DATATYPE_FLOAT64 9 Signed 64 bit floating point number.
INFO_DATATYPE_PTR 10 Pointer type (void*). Size is platform

dependent (32 bit on 32 bit platforms)
INFO_DATATYPE_BOOL8 11 Boolean value occupying 8 bit. 0 for

false and anything for true.
INFO_DATATYPE_SIZET 12 Platform dependent unsigned integer

(32 bit on 32 bit platforms)
INFO_DATATYPE_BUFFER 13 Like a INFO_DATATYPE_STRING

but with arbitrary data and no 0
termination.

INFO_DATATYPE_CUSTOM_ID 1000 Starting value for Custom IDs

enum TL_INFO_CMD

System module information commands for the TLGetInfo and GCGetInfo functions.

Enumerator Value Description
TL_INFO_ID 0 GenTL Producer vendor name.

Data type: STRING.
TL_INFO_VENDOR 1 GenTL Producer vendor name.

Data type: STRING.
TL_INFO_MODEL 2 GenTL Producer model name.

Data type: STRING.
For example: Assuming a vendor
produces more than one TL Producer
for different device classes or different
technologies the Model references a
single TL Producer implementation.
The combination of Vendor and
Model provides a unique reference of

 10 November 2009 Page 72 of 92

Version 1.1 GenTL Standard

Enumerator Value Description
ONE TL Producer implementation.

TL_INFO_VERSION 3 GenTL Producer revision.
Data type: STRING.

TL_INFO_TLTYPE 4 Transport layer technologies that are
supported.
• “Mixed” for several technologies
• “Custom” for not defined ones
• “GEV” for GigE Vision
• “CL” for Camera Link
• “IIDC” for IIDC 1394
• “UVC” for USB video class

devices
Data type: STRING.

TL_INFO_NAME 5 File name including extension of the
library.
Data type: STRING.

TL_INFO_PATHNAME 6 Full path including file name and
extension of the library.
Data type: STRING.

TL_INFO_DISPLAYNAME 7 User readable name of the GenTL
Producer.
Data type: STRING.

TL_INFO_CUSTOM_ID 1000 Starting value for GenTL Producer
custom IDs.

6.4.2 Interface Enumerations

enum INTERFACE_INFO_CMD

This enumeration defines commands to retrieve information with the IFGetInfo function
from the Interface module.

Enumerator Value Description
INTERFACE_INFO_ID 0 Unique ID of the interface.

Data type: STRING
INTERFACE_INFO_DISPLAYNAME 1 User readable name of the interface.

Data type: STRING
INTERFACE_INFO_TLTYPE 2 Transport layer technologies that are

supported.
• ”Custom“ for not defined ones
• “GEV” for GigE Vision
• “CL” for Camera Link
• “IIDC” for IIDC 1394

 10 November 2009 Page 73 of 92

Version 1.1 GenTL Standard

Enumerator Value Description
• “UVC” for USB video class devices
Data type: STRING.

INTERFACE_INFO_CUSTOM_ID 1000 Starting value for GenTL Producer
custom IDs.

6.4.3 Device Enumerations

enum DEVICE_ACCESS_FLAGS

This enumeration defines flags how a device is to be opened with the IFOpenDevice
function. Also possible results are defined.

Enumerator Value Description
DEVICE_ACCESS_UNKNOWN 0 Not used in a command. Can be used to

initialize a variable to query that
information.

DEVICE_ACCESS_NONE 1 This either means that the device is not
open because it was not opened before or
the access to it was denied.

DEVICE_ACCESS_READONLY 2 Open the device read only. All Port
functions can only read from the device.

DEVICE_ACCESS_CONTROL 3 Open the device in a way that other
hosts/processes can have read only
access to the device. Device access level
is read/write for this process.

DEVICE_ACCESS_EXCLUSIVE 4 Open the device in a way that only this
host/process can have access to the
device. Device access level is read/write
for this process.

DEVICE_ACCESS_CUSTOM_ID 1000 Starting value for GenTL Producer
custom IDs.

enum DEVICE_ACCESS_STATUS

This enumeration defines the status codes used in the info functions to retrieve the current
accessibility of the device.

Enumerator Value Description
DEVICE_ACCESS_STATUS_UNKNOWN 0 The current availability of the device is

unknown.
DEVICE_ACCESS_STATUS_READWRI
TE

1 The device is available for Read/Write
access

DEVICE_ACCESS_STATUS_READONL 2 The device is available for Read access.

 10 November 2009 Page 74 of 92

Version 1.1 GenTL Standard

Enumerator Value Description
Y
DEVICE_ACCESS_STATUS_NOACCES
S

3 The device is not available either
because it is already open or because it is
not reachable.

DEVICE_ACCESS_STATUS_CUSTOM_
ID

1000 Starting value for custom IDs.

enum DEVICE_INFO_CMD

This enumeration defines commands to retrieve information with the DevGetInfo function
on a device handle.

Enumerator Value Description
DEVICE_INFO_ID 0 Unique ID of the device.

Data type: STRING
DEVICE_INFO_VENDOR 1 Device vendor name.

Data type: STRING
DEVICE_INFO_MODEL 2 Device model name.

Data type: STRING
DEVICE_INFO_TLTYPE 3 Transport layer technologies that are

supported.
• “Custom“ for not defined ones
• “GEV” for GigE Vision
• “CL” for Camera Link
• “IIDC” for IIDC 1394
• “UVC” for USB video class devices
Data type: STRING

DEVICE_INFO_DISPLAYNAME 4 User readable name of the device. If this
is not defined in the device this should
be “VENDOR MODEL (ID)”
Data type: STRING

DEVICE_INFO_ACCESS_STATUS 5 Gets the access status the GenTL
Producer has on the device.
Data type: INT32
(DEVICE_ACCESS_STATUS
enumeration value)

DEVICE_INFO_CUSTOM_ID 1000 Starting value for GenTL Producer
custom IDs.

 10 November 2009 Page 75 of 92

Version 1.1 GenTL Standard

6.4.4 Data Stream Enumerations

enum ACQ_QUEUE_TYPE

This enumeration commands from which to which queue/pool buffers are flushed with the
DSFlushQueue function.

Enumerator Value Description
ACQ_QUEUE_INPUT_TO_OUTPUT 0 Flushes the input pool to the output

buffer queue and if necessary adds
entries in the “New Buffer” event data
queue.

ACQ_QUEUE_OUTPUT_DISCARD 1 Discards all buffers in the output buffer
queue and if necessary remove the
entries from the event data queue.

ACQ_QUEUE_ALL_TO_INPUT 2 Puts all buffers in the input pool. Even
those in the output buffer queue and
discard entries in the event data queue.

ACQ_QUEUE_UNQUEUED_TO_INPUT 3 Puts all buffers that are not in the input
pool or the output buffer queue in the
input pool.

ACQ_QUEUE_ALL_DISCARD 4 Discards all buffers in the input pool and
output buffer queue.

ACQ_QUEUE_CUSTOM_ID 1000 Starting value for GenTL Producer
custom IDs.

enum ACQ_START_FLAGS

This enumeration defines special start flags for the acquisition engine. The function used is
DSStartAcquisition.

Enumerator Value Description
ACQ_START_FLAGS_DEFAULT 0 Default behavior.
ACQ_START_FLAGS_CUSTOM_ID 1000 Starting value for GenTL Producer

custom IDs.

enum ACQ_STOP_FLAGS

This enumeration defines special stop flags for the acquisition engine. The function used is
DSStopAcquisition.

Enumerator Value Description
ACQ_STOP_FLAGS_DEFAULT 0 Stop the acquisition engine when the

currently running tasks like filling a

 10 November 2009 Page 76 of 92

Version 1.1 GenTL Standard

Enumerator Value Description
buffer are completed (default behavior).

ACQ_STOP_FLAGS_KILL 1 Stop the acquisition engine immediately
and leave buffers currently being filled
in the Input Buffer Pool.

ACQ_STOP_FLAGS_CUSTOM_ID 1000 Starting value for GenTL Producer
custom IDs.

enum BUFFER_INFO_CMD

This enumeration defines commands to retrieve information with the DSGetBufferInfo
function on a buffer handle.

Enumerator Value Description
BUFFER_INFO_BASE 0 Base address of the buffer memory.

Data type: PTR
BUFFER_INFO_SIZE 1 Size of the buffer in bytes.

Data type: SIZET
BUFFER_INFO_USER_PTR 2 Private data pointer of the GenTL

Consumer.
Data type: PTR

BUFFER_INFO_TIMESTAMP 3 Timestamp the buffer was acquired. The
unit is device/implementation dependent.
In case the technology and/or the device
does not support this for example under
Windows a QueryPerformanceCounter
can be used.
Data type: UINT64

BUFFER_INFO_NEW_DATA 4 Flag to indicate that the buffer contains
new data since the last call.
Data type: BOOL8

BUFFER_INFO_IS_QUEUED 5 Flag to indicate if the buffer is in the
input pool or output buffer queue.
Data type: BOOL8

BUFFER_INFO_IS_ACQUIRING 6 Flag to indicate that the buffer is
currently being filled with data.
Data type: BOOL8

BUFFER_INFO_IS_INCOMPLETE 7 Flag to indicate that a buffer was filled
but an error occurred during that process.
Data type: BOOL8

BUFFER_INFO_TLTYPE 8 Transport layer technologies that are
supported.
• “Custom“ for not defined ones
• “GEV” for GigE Vision

 10 November 2009 Page 77 of 92

Version 1.1 GenTL Standard

Enumerator Value Description
• “CL” for Camera Link
• “IIDC” for IIDC 1394
• “UVC” for USB video class devices
Data type: STRING

BUFFER_INFO_SIZE_FILLED 9 Number of bytes written into the buffer
last time it has been filled. This value is
reset to 0 when the buffer is placed into
the Input Buffer Pool.
Data type: SIZET

BUFFER_INFO_CUSTOM_ID 1000 Starting value for GenTL Producer
custom IDs.

enum STREAM_INFO_CMD

This enumeration defines commands to retrieve information with the DSGetInfo function
on a data stream handle.

Enumerator Value Description
STREAM_INFO_ID 0 Unique ID of the data stream.

Data type: STRING
STREAM_INFO_NUM_DELIVERED 1 Number of acquired frames since

last acquisition start.
Data type: UINT64

STREAM_INFO_NUM_UNDERRUN 2 Number of lost frames due to
queue underrun.
Data type: UINT64

STREAM_INFO_NUM_ANNOUNCED 3 Number of announced buffers.
Data type: SIZET

STREAM_INFO_NUM_QUEUED 4 Number of buffers in the input
pool.
Data type: SIZET

STREAM_INFO_NUM_AWAIT_DELIVERY 5 Number of buffers in the output
buffer queue.
Data type: SIZET

STREAM_INFO_NUM_STARTED 6 Number of frames started in the
acquisition engine.
Data type: UINT64

STREAM_INFO_PAYLOAD_SIZE 7 Size of the expected data in bytes.
Data type: SIZET

STREAM_INFO_IS_GRABBING 8 Flag indicating whether the
acquisition engine is started or not.
This is independent from the
acquisition status of the remote

 10 November 2009 Page 78 of 92

Version 1.1 GenTL Standard

Enumerator Value Description
device.
Data type: BOOL8

STREAM_INFO_DEFINES_PAYLOADSIZE

9 Flag that indicating that this data
stream defines a payload size
independent from the remote
device. If false the size of the
expected PayloadSize is to be
retrieved from the remote device.
If true the expected PayloadSize
is to be inquired from the Data
Stream module.
Data type: BOOL8

STREAM_INFO_TLTYPE 10 Transport layer technologies that
are supported.
• “Custom“ for not defined ones
• “GEV” for GigE Vision
• “CL” for Camera Link
• “IIDC” for IIDC 1394
• “UVC” for USB video class

devices
Data type: STRING

STREAM_INFO_CUSTOM_ID 1000 Starting value for GenTL Producer
custom IDs.

6.4.5 Port Enumerations

enum PORT_INFO_CMD

This enumeration defines commands to retrieve information with the GCGetPortInfo
function on a module or remote device handle.

Enumerator Value Description
PORT_INFO_ID 0 Unique ID of the module the port

references.
Data type: STRING

PORT_INFO_VENDOR 1 Port vendor name.
Data type: STRING

PORT_INFO_MODEL 2 Port model name.
Data type: STRING
The port model references the model of
the underlying module. So for example if
the port is for the configuration of a
TLSystem Module the

 10 November 2009 Page 79 of 92

Version 1.1 GenTL Standard

Enumerator Value Description
PORT_INFO_MODEL returns the
model of the TLSystem Module.

PORT_INFO_TLTYPE 3 Transport layer technologies that are
supported.
• “Custom“ for not defined ones
• “GEV” for GigE Vision
• “CL” for Camera Link
• “IIDC” for IIDC 1394
• “UVC” for USB video class devices
Data type: STRING

PORT_INFO_MODULE 4 GenTL Module the port refers to:
• “TLSystem” for the System module
• “TLInterface” for the Interface

module
• “TLDevice” for the Device module
• “TLDataStream” for the Data Stream

module
• “TLBuffer” for the Buffer module
• “Device” for the remote device
Data type: STRING

PORT_INFO_LITTLE_ENDIAN 5 Flag indicating that the port’s data is
little endian.
Data type: BOOL8

PORT_INFO_BIG_ENDIAN 6 Flag indicating that the port’s data is big
endian.
Data type: BOOL8

PORT_INFO_ACCESS_READ 7 Flag indicating that read access is
allowed.
Data type: BOOL8

PORT_INFO_ACCESS_WRITE 8 Flag indicating that write access is
allowed.
Data type: BOOL8

PORT_INFO_ACCESS_NA 9 Flag indicating that the port is currently
not available.
Data type: BOOL8

PORT_INFO_ACCESS_NI 10 Flag indicating that no port is
implemented.
Data type: BOOL8

PORT_INFO_VERSION 11 Version of the port.
Data type: STRING

PORT_INFO_PORTNAME 12 Name of the port as referenced in the
XML description.
Data type: STRING

PORT_INFO_CUSTOM_ID 1000 Starting value for GenTL Producer

 10 November 2009 Page 80 of 92

Version 1.1 GenTL Standard

Enumerator Value Description
custom IDs.

enum URL_INFO_CMD

This enumeration defines commands to retrieve information with the GCGetPortURLInfo
function on a module or remote device handle.

Enumerator Value Description
URL_INFO_URL 0 URL as defined in chapter 4.1.2

Data type: STRING
URL_INFO_SCHEMA_VER_MAJOR 1 Major version of the schema this URL

refers to.
Data type: INT32

URL_INFO_SCHEMA_VER_MINOR 2 Minor version of the schema this URL
refers to.
Data type: INT32

URL_INFO_FILE_VER_MAJOR 3 Major version of the XML-file this URL
refers to.
Data type: INT32

URL_INFO_FILE_VER_MINOR 4 Minor version of the XML-file this URL
refers to.
Data type: INT32

URL_INFO_FILE_VER_SUBMINOR 5 Subminor version of the XML-file this
URL refers to.
Data type: INT32

URL_INFO_CUSTOM_ID 1000 Starting value for GenTL Producer
custom IDs.

6.4.6 Signaling Enumerations

enum EVENT_DATA_INFO_CMD

This enumeration defines commands to retrieve information with the EventGetDataInfo
function on delivered event data.

The availability and the data type of the enumerators depend on the event type (see below).

Enumerator Value Description
EVENT_DATA_ID 0 Defines a date in the event data to

identify the object or feature the event
refers to. This can be e.g. the error
code for an error event or the feature
name for GenApi related events.

 10 November 2009 Page 81 of 92

Version 1.1 GenTL Standard

Enumerator Value Description
EVENT_DATA_VALUE 1 Defines additional data to an ID. This

can be e.g. the error message for an
error event.

EVENT_DATA_CUSTOM_ID 1000 Starting value for GenTL Producer
custom Ids.

enum EVENT_INFO_CMD

This enumeration defines command to retrieve information with the EventGetInfo
function on an event handle.

Enumerator Value Description
EVENT_EVENT_TYPE 0 The event type of the event handle.

Data type: INT32 (EVENT_TYPE enum
value)

EVENT_NUM_IN_QUEUE 1 Number of events in the event data
queue.
Data type: SIZET

EVENT_NUM_FIRED 2 Number of events that were fired since
the creation of the module.
Data type: UINT64

EVENT_INFO_CUSTOM_ID 1000 Starting value for GenTL Producer
custom IDs.

enum EVENT_TYPE

Known event types that can be registered on certain modules with the GCRegisterEvent
function. See 4.2 Signaling page 30 for more information.

Specific values of the event data can be queried with the EventGetDataInfo function. It
is stated in the table which enumerators specify values that can be retrieved by a specific
event type.

Enumerator Value Description
EVENT_ERROR 0 Notification on module errors. Values that

can be retrieved are:
• EVENT_DATA_ID

Data type: INT32 (GC_ERROR)
• EVENT_DATA_VALUE

Data type: STRING (Description)
EVENT_NEW_BUFFER 1 Notification on newly filled buffers.

Values that can be retrieved are:
• EVENT_DATA_ID

 10 November 2009 Page 82 of 92

Version 1.1 GenTL Standard

Enumerator Value Description
Data type: PTR (Buffer handle)

• EVENT_DATA_VALUE
Data type: PTR (Private pointer)

EVENT_FEATURE_INVALIDATE 2 Notification if a feature was changed by
the GenTL Producer driver and thus needs
to be invalidated in the GenICam GenApi
instance using the module. Values that can
be retrieved are:
• EVENT_DATA_ID

Data type: STRING (Feature name)
EVENT_FEATURE_CHANGE 3 Notification if the GenTL Producer driver

wants to manually set a feature in the
GenICam GenApi instance using the
module. Values that can be retrieved are:
• EVENT_DATA_ID

Data type: STRING (Feature name)
• EVENT_DATA_VALUE

Data type: STRING (Feature value)
EVENT_FEATURE_DEVEVENT 4 Notification if the GenTL Producer wants

to inform the GenICam GenApi instance
of the remote device that a GenApi
compatible event was fired.
Values that can be retrieved are:
• EVENT_DATA_ID

Data type: STRING (Event ID)
• EVENT_DATA_VALUE

Data type: BUFFER (optional data)
EVENT_CUSTOM_ID 1000 Starting value for GenTL Producer custom

events.

6.5 Structures
Structures are byte aligned. The size of pointers as members is platform dependent.

6.5.1 Signaling Structures

struct EVENT_NEW_BUFFER_DATA

Structure of the data returned from a signaled “New Buffer” event.

Member Type Description
BufferHandle BUFFER_HANDLE Buffer handle which contains new data.

 10 November 2009 Page 83 of 92

Version 1.1 GenTL Standard

 10 November 2009 Page 84 of 92

Member Type Description
UserPointer void * User pointer provided at announcement of the

buffer.

6.5.2 Port Structures

struct PORT_REGISTER_STACK_ENTRY

Layout of the array elements being used in the function GCWritePortStacked and
GCReadPortStacked to accomplish a stacked register read/write operations.

Member Type Description
Address uint64_t Register address
Buffer void * Pointer to the buffer receiving the data being

read/containing the data to write.
Size size_t Number of bytes to read / write. The provided

Buffer must be at least that size.

Version 1.1 GenTL Standard

7 Standard Feature Naming Convention for GenTL
The different GenTL modules expose their features through the Port functions interface. To
interpret the virtual register map of each module the GenICam GenApi is used. This
document only contains the names of mandatory features that must be implemented to
guarantee interoperability between the different GenTL Consumers and GenTL Producers.
Additional features and descriptions can be found in the GenICam Standard Feature Naming
Convention document (SFNC).

For technical reasons the different transport layer technologies and protocols (GigE Vision,
IIDC 1394, Camera Link,…) have different feature sets. This is addressed in dedicated
sections specialized on these technologies. Also features specific to one technology have a
prefix indicating its origin, e.g. Gev for GigE Vision specific features or Cl for Camera Link
specific features.

7.1 Common
The common feature set is mandatory for all GenTL Producer implementations and used for
all transport layer technologies.

7.1.1 System Module
This is a description of all features which must be accessible in the System module: Port
functions use the TL_HANDLE to access these features. The Port access for this module is
mandatory.

Table 7-1: System module information features

Name Interface Access Description
TLPort IPort R/W The port through which the System

module is accessed.
TLVendorName IString R Name of the GenTL Producer

vendor.
TLModelName IString R Name of the GenTL Producer to

distinguish different kinds of GenTL
Producer implementations from one
vendor.

TLID IString R Unique identifier of the GenTL
Producer like a GUID.

TLVersion IString R Vendor specific version string.
TLPath IString R Full path to the GenTL Producer

driver including name and extension.
TLType IEnumeration R Identifies the transport layer

technology of the GenTL Producer
implementation.
Values:
• “Mixed” for several technologies
• “Custom” for not defined ones

 10 November 2009 Page 85 of 92

Version 1.1 GenTL Standard

Name Interface Access Description
• “GEV” for GigE Vision
• “CL” for Camera Link
• “IIDC” for IIDC 1394
• “UVC” for USB video class

devices
GenTLVersionMajor IInteger R Major version number of the GenTL

specification the GenTL Producer
implementation complies with.

GenTLVersionMinor IInteger R Minor version number of the GenTL
specification the GenTL Producer
implementation complies with.

Table 7-2: Interface enumeration features

Name Interface Access Description
InterfaceUpdateList ICommand (R)/W Updates the internal interface list.

This feature should be readable if the
execution can not performed
immediately. The command then
returns and the status can be polled.
This function interacts with the
TLUpdateInterfaceList of the GenTL
Producer. It is up to the GenTL
Consumer to handle access in case
both methods are used.

InterfaceSelector IInteger R/W Selector for the different GenTL
Producer interfaces.
This interface list only changes on
execution of InterfaceUpdateList.

InterfaceID
[InterfaceSelector]

IString R GenTL Producer wide unique
identifier of the selected interface.
This interface list only changes on
execution of InterfaceUpdateList.

7.1.2 Interface Module
All features that must be accessible in the interface module are listed here: Port functions use
the IF_HANDLE to access these features. The Port access for this module is mandatory.

Table 7-3: Interface information features

Name Interface Access Description
InterfacePort IPort R/W The port through which the interface

module is accessed.
InterfaceID IString R GenTL Producer wide unique

 10 November 2009 Page 86 of 92

Version 1.1 GenTL Standard

Name Interface Access Description
identifier of the selected interface.

InterfaceType IEnumeration R Identifies the transport layer
technology of the interface.
Values:
• “Custom” for not defined ones
• “GEV” for GigE Vision
• “CL” for Camera Link
• “IIDC” for IIDC 1394
• “UVC” for USB video devices

Table 7-4: Device enumeration features

Name Interface Access Description
DeviceUpdateList ICommand (R)/W Updates the internal device list.

This feature should be readable if the
execution can not performed
immediately. The command then
returns and the status can be polled.
This function interacts with the
TLUpdateDeviceList function of the
GenTL Producer. It is up to the
GenTL Consumer to handle access in
case both methods are used.

DeviceSelector IInteger R/W Selector for the different devices on
this interface.
This value only changes on execution
of DeviceUpdateList.

DeviceID
[DeviceSelector]

IString R Interface wide unique identifier of the
selected device.
This value only changes on execution
of DeviceUpdateList.

DeviceVendorName
[DeviceSelector]

IString R Name of the device vendor.
This value only changes on execution
of DeviceUpdateList.

DeviceModelName
[DeviceSelector]

IString R Name of the device model.
This value only changes on execution
of DeviceUpdateList.

DeviceAccessStatus
[DeviceSelector]

IEnumeration R Gives the current access status.
This value only changes on execution
of DeviceUpdateList.
Values:
• “ReadWrite” for full access
• “ReadOnly” for read-only access
• “NoAccess” if another device has

 10 November 2009 Page 87 of 92

Version 1.1 GenTL Standard

Name Interface Access Description
exclusive access

7.1.3 Device Module
Contains all features which must be accessible in the Device module: Port functions use the
DEV_HANDLE to access these features. The Port access for this module is mandatory.

Do not mistake this Device module Port access with the remote device Port access. This
module represents the GenTL Producer’s view on the remote device. The remote device port
is retrieved via the DevGetPort function returning a PORT_HANDLE for the remote device.

Table 7-5: Device information features

Name Interface Access Description
DevicePort IPort R/W Port through which the Device

module is accessed.
DeviceID IString R Interface wide unique identifier of

this device.
DeviceVendorName IString R Name of the device vendor.
DeviceModelName IString R Name of the device model.
DeviceType IEnumeration R Identifies the transport layer

technology of the device.
Values:
• “Custom” for not defined ones
• “GEV” for GigE Vision
• “CL” for Camera Link
• “IIDC” for IIDC 1394
• “UVC” for USB video class

devices

Table 7-6: Stream enumeration features

Name Interface Access Description
StreamSelector IInteger R/W Selector for the different stream

channels
StreamID
[StreamSelector]

IString R Device unique ID for the stream, e.g.
a GUID.

7.1.4 Data Stream Module
This section lists all features which must be available in the stream module: Port functions use
the DS_HANDLE to access the features. The Port access for this module is mandatory.

Table 7-7: Data Stream information features

Name Interface Access Description
StreamPort IPort R/W Port through which the Data Stream

 10 November 2009 Page 88 of 92

Version 1.1 GenTL Standard

Name Interface Access Description
module is accessed.

StreamID IString R Device unique ID for the data
stream, e.g. a GUID.

StreamAnnouncedBufferCo
unt

IInteger R Number of announced (known)
buffers on this stream.

StreamAcquisitionModeSel
ector

IEnumeration R/W Available acquisition modes of this
Stream.
Value: “Default” (see chapter 5
Acquisition Engine page 35ff)

StreamAnnounceBufferMini
mum
[AcquisitionModeSelector]

IInteger R Minimal number of buffers to
announce to enable selected
acquisition mode.

StreamType IEnumeration R Identifies the transport layer
technology of the stream.
Values:
• “Custom” for not defined ones
• “GEV” for GigE Vision
• “CL” for Camera Link
• “IIDC” for IIDC 1394
• “UVC” for USB video class

devices

7.1.5 Buffer Module
All features that must be accessible on a buffer if a Port access is provided are listed here.
Port functions use the BUFFER_HANDLE to access these features. The Port access for the
BUFFER_HANDLE is not mandatory. Thus all features listed here need not be implemented.
If a Port access is implemented on the handle though, all mandatory features must be present.

Table 7-8: Buffer information features

Name Interface Access Description
BufferPort IPort R/W Port through which a specific buffer

is accessed.
BufferData IRegister R/(W) Entire buffer data.
BufferUserData IInteger R User data provided by user data

pointer at buffer announcement.
(see chapter 6.3.5 Data Stream
Functions page 57ff)

 10 November 2009 Page 89 of 92

Version 1.1 GenTL Standard

7.2 GigE Vision
For a GenTL Producer implementation supporting GigE Vision the features defined in this
section must also be present. All features described in this chapter have to be added to the
modules in the common part and are accessed the same way.

7.2.1 System Module
Table 7-9: GigE Vision system information features

Name Interface Access Description
GevVersionMajor IInteger R Major version number of the GigE

Vision specification the GenTL
Producer implementation complies
to.
If the System module has a TLType
“Mixed” but supports GigE Vision
interfaces this feature must be
present.

GevVersionMinor IInteger R Minor version number of the GigE
Vision specification the GenTL
Producer implementation complies
to.
If the System module has a TLType
“Mixed” but supports GigE Vision
interfaces this feature must be
present.

Table 7-10: GigE Vision interface enumeration features

Name Interface Access Description
GevInterfaceMACAddress
[InterfaceSelector]

IInteger R 48-bit MAC address of the selected
interface.

GevInterfaceDefaultIPAdd
ress
[InterfaceSelector]

IInteger R IP address of the first subnet of the
selected interface.

GevInterfaceDefaultSubnet
Mask
[InterfaceSelector]

IInteger R Subnet mask of the first subnet of the
selected interface.

GevInterfaceDefaultGatew
ay
[InterfaceSelector]

IInteger R Default gateway of the selected
interface.

7.2.2 Interface Module
Table 7-11: GigE Vision interface information features

Name Interface Access Description

 10 November 2009 Page 90 of 92

Version 1.1 GenTL Standard

 10 November 2009 Page 91 of 92

Name Interface Access Description
GevInterfaceGatewaySelec
tor

IInteger R/W Selector for the different gateway
entries for this interface.

GevInterfaceGateway
[GevGatewaySelector]

IInteger R IP address of the selected gateway
entry of this interface.

GevMACAddress IInteger R 48-bit MAC address of this interface.
GevInterfaceSubnetSelecto
r

IInteger R/W Selector for the subnet of this
interface.

GevInterfaceSubnetIPAddr
ess
[GevSubnetSelector]

IInteger R IP address of the selected subnet of
this interface.

GevInterfaceSubnetMask
[GevSubnetSelector]

IInteger R Subnet mask of the selected subnet of
this interface.

Table 7-12: GigE Vision device enumeration features

Name Interface Access Description
GevDeviceIPAddress
[DeviceSelector]

IInteger R Current IP address of the GVCP
interface of the selected remote
device.

GevDeviceSubnetMask
[DeviceSelector]

IInteger R Current subnet mask of the GVCP
interface of the selected remote
device.

GevDeviceMACAddress
[DeviceSelector]

IInteger R 48-bit MAC address of the GVCP
interface of the selected remote
device.

7.2.3 Device Module
Table 7-13: GigE Vision device information features

Name Interface Access Description
GevDeviceIPAddress IInteger R Current IP address of the GVCP

interface of the remote device.
GevDeviceSubnetMask IInteger R Current subnet mask of the GVCP

interface of the remote device.
GevDeviceMACAddress IInteger R 48-bit MAC address of the GVCP

interface of the remote device.
GevDeviceGateway IInteger R Current gateway IP address of the

GVCP interface of the remote
device.

DeviceEndianessMechanism

Enumeration R/W Identifies the endianess mode
Values:
• “Legacy” for handling the device

endianess according to GenICam
Schema 1.0

Version 1.1 GenTL Standard

Name Interface Access Description
• “Standard” for handling the

device endianess according to
GenICam Schema 1.1 and later

Default value is “Legacy”.

 10 November 2009 Page 92 of 92

	1 Introduction
	1.1 Purpose
	1.2 Committee
	1.3 Definitions and Acronyms
	1.3.1 Definitions
	1.3.2 Acronyms

	1.4 References

	2 Architecture
	2.1 Overview
	2.1.1 GenICam GenTL
	2.1.2 GenICam GenApi

	2.2 GenTL Modules
	2.2.1 System Module
	2.2.2 Interface Module
	2.2.3 Device Module
	2.2.4 Data Stream Module
	2.2.5 Buffer Module

	2.3 GenTL Module Common Parts
	2.3.1 C Interface
	2.3.2 Configuration
	2.3.3 Signaling (Events)

	3 Module Enumeration and Instantiation
	3.1 Setup
	3.2 System
	3.3 Interface
	3.4 Device
	3.5 Data Stream
	3.6 Buffer
	3.7 Example
	3.7.1 Basic Device Access
	3.7.2 InitLib
	3.7.3 OpenTL
	3.7.4 OpenFirstInterface
	3.7.5 OpenFirstDevice
	3.7.6 OpenFirstDataStream
	3.7.7 CloseDataStream
	3.7.8 CloseDevice
	3.7.9 CloseInterface
	3.7.10 CloseTL
	3.7.11 CloseLib

	4 Configuration and Signaling
	4.1 Configuration
	4.1.1 Modules
	Device Module
	Buffer Module

	4.1.2 XML Description
	Module Register Map (Recommended)
	Local Directory
	Vendor Web Site (optional)

	4.1.3 Example

	4.2 Signaling
	4.2.1 Event Objects
	4.2.2 Event Data Queue
	4.2.3 Event Handling
	Registration
	Notification and Data Retrieval

	4.2.4 Example
	AcqFunction

	5 Acquisition Engine
	5.1 Overview
	5.1.1 Announced Buffer Pool
	5.1.2 Input Buffer Pool
	5.1.3 Output Buffer Queue

	5.2 Acquisition Chain
	5.2.1 Allocate Memory
	5.2.2 Announce Buffers
	5.2.3 Queue Buffers
	5.2.4 Register “New Buffer” Event
	5.2.5 Start Acquisition
	5.2.6 Acquire Image Data
	5.2.7 Stop Acquisition
	5.2.8 Flush Buffer Pools and Queues
	5.2.9 Revoke Buffers
	5.2.10 Free Memory

	5.3 Acquisition Modes
	5.3.1 Default Mode

	6 Software Interface
	6.1 Overview
	6.1.1 Installation
	6.1.2 Function Naming Convention
	6.1.3 Memory and Object Management
	6.1.4 Thread and Multiprocess Safety
	6.1.5 Error Handling

	6.2 Used Data Types
	GC_ERROR
	Handles
	Enumerations
	Buffers and C Strings
	Primitive Data Types

	6.3 Function Declarations
	6.3.1 Library Functions
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Returns

	6.3.2 System Functions
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns

	6.3.3 Interface Functions
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns

	6.3.4 Device Functions
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns

	6.3.5 Data Stream Functions
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns

	6.3.6 Port Functions
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns

	6.3.7 Signaling Functions
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns

	6.4 Enumerations
	6.4.1 Library and System Enumerations
	6.4.2 Interface Enumerations
	6.4.3 Device Enumerations
	6.4.4 Data Stream Enumerations
	6.4.5 Port Enumerations
	6.4.6 Signaling Enumerations

	6.5 Structures
	6.5.1 Signaling Structures
	6.5.2 Port Structures

	7 Standard Feature Naming Convention for GenTL
	7.1 Common
	7.1.1 System Module
	7.1.2 Interface Module
	7.1.3 Device Module
	7.1.4 Data Stream Module
	7.1.5 Buffer Module

	7.2 GigE Vision
	7.2.1 System Module
	7.2.2 Interface Module
	7.2.3 Device Module

